# New Concepts in Fish Ladder Design: Analysis of Barriers to Upstream Fish Migration, Volume IV of IV 

Investigation of the Physical and Biological Conditions Affecting Fish Passage Success at Culverts and Waterfalls


SONAEMRHE

This Document should be cited as follows:

Powers, Patrick, John Orsborn, "New Concepts in Fish Ladder Design: Analysis of Barriers to Upstream Fish Migration, Volume IV of IV; Investigation of the Physical and Biological Conditions Affecting Fish Passage Success at Culverts and Waterfalls", 1982-1984 Final Report, Project No. 198201400, 134 electronic pages, (BPA Report DOE/BP-36523-1)

Bonneville Power Administration
P.O. Box 3621

Portland, OR 97208

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA.

## FI NAL PRO ECT REPORT

## Part 4 of 4

Anal ysi s of Barriers to Upstream Fi sh M gration

# An Investigation of the Physical and Bi ol ogical Conditions Affecting Fish Passage Success at Cul verts and Viterfalls 

Prepared by<br>Patrick D. Powers<br>and<br>J ohn F. Orsborn<br>Al brook Hydraulics Laboratory Departnent of $\mathbf{G i v i l}$ and Envi ronnental Enqi neerinq<br>Whshi nqton State Uni versity<br>Pul I nan, Wishi nqt on 99164-3001

## Submitted to <br> Bonnevi I le Power Admi ni stration

Part of a BPA Fi sheries Project on the DEVELOPMENT OF NEW CONCEPTS IN FI SHLADDER DESI GN Cont ract DE- A179- 82BP36523

Project No. 82-14

## TABLE OF CONTENTS

Paqe
LIST OF TABLES ..... iii
LIST OF FIGRES ..... v
SUMMARY OF FOR RESEARCH PRO ECTS. ..... ix
ACKNOWLEDGEMENTS ..... xi
ABSTRACT ..... xiii
I NTRODUCTI ON ..... 1
FISH CAPABILITIES. ..... 10
Swi min nq Speeds ..... 10
Leapinq Capabilities ..... 12
Swi minq Performance ..... 17
CLASSI FIICATI ON OF BARRI ERS ..... 24
Cl ass ..... 26
Type ..... 27
Maqnitude and Di scharqe ..... 31
ANALYSIS OF BARRIERS ..... 40
Pl unqe Pool Requi rements ..... 41
Landi nq Condi tions ..... 43
Anal ysis of Falls ..... 50
Anal ysi s of Chutes ..... 56
Cascade Barriers ..... 65
SI TE ANALYSES AND SOLUTI ONS. ..... 68
Red Cabin Creek Anal ysis ..... 71
Red Cabin Creek Sol utions ..... 75
Chuckanut Creek Whterfall Anal ysi s ..... 80
Chuckanut Creek Whterfall Sol utions. ..... 88
CONCLUSI ONS ..... 94
SUGGESTI ONS FOR FURTHER STUDY ..... 96
REFERENCES ..... 98
APPEND X ..... 101
I. Notation ..... 101
II. Anal ysis of coho and chumsal non swining up a vel ocity chute ..... 104

## LIST OF TABLES

Tabl e
Paqe

1. Fi sh speeds of average si ze adul $t$ sal non and steel head trout as reported by Bel I (1973) ..... 11
2. Coefficient of fish condition ( $\mathrm{C}_{\mathrm{fc}}$ ) ..... 12
3. Fi sh capability equations for swiming and I eapi ng ..... 23
4. Characteristics of classification components ..... 26
5. Subj ective comparative rating of barrier cl ass characteristics in reference to fish passage difficulty, independent of barrier hei ght and vel ocity ..... 28
6. Rel ationshi ps bet neen pl unge pool depth, depth of pl unge and fish length for optimm I eapi ng condi tions ..... 43
7. Rel ationshi ps between fish depth, critical depth, mean vel ocity and sustai ned swi ming speed for optimmlanding conditions ..... 47
8. Conditions for anal yzing a fall assuming pl unge pool requi renents and I anding conditions are satisfied ..... 56
9. Manni ng's n val ue for corrugated netal pipe and bed rock (from Chow, 1959) ..... 58
10. Hydraulic radi us as a function of the width and depth for rectangul ar and triangul ar shaped channel s ..... 59
11. Fi sh swiming in a cul vert at vel ocities less than the mean vel ocity of flow ..... 62
12. Conditions for anal yzing a chute assuming pl unge pool requi renents, I andi ng con- ditions and depth of flow are sufficient ..... 65
13. Red Cabi $\mathbf{n}$ Creek probl ens and sol utions ..... 80

## LI ST OF FI GRES

Fi gure Page

1. Fl ow chart anal ysi s of a migation barrier ..... 3
2. Profile view of a fall ..... 5
3. Profile view of a cantilevered cul vert ..... 5
4. Profile vi ew of a steep/ hi gh vel ocity chute ..... 6
5. Profile view of a steep/ hi gh vel ocity cul vert ..... 6
6. Pl an vi ew of a cascade ..... 7
7. Leapi ng curves for steel head trout ..... 14
8. Leapi ng curves for chi nook, coho and sockeye sal non ..... 15
9. Leapi ng curves for pink and chumsal non ..... 16
10. Maxi mum swiming di stance for steel head trout under three fish conditions ..... 19
11. Maxi mum swi ming di stance for chi nook, coho and sockeye sal non under three fish conditions ..... 20
12. Mexi mum swi ming di stance for pink and chum sal mon under three fish conditions ..... 20
13. Swi ming perfornance of sal non and trout from Evans and Johnst on (1980) ..... 21
14. Conceptual nodel of a fall ..... 29
15. Conceptual model of a chute ..... 30
16. Fi sh exit zone notation ..... 32
17. Fi sh passage zone notation ..... 33
18. Fi sh entrance zone notation ..... 34
19. Concept ual nodel s of barrier types with corresponding degree of difficulty rating ..... $35 \cdot 38$
20. Sample barrier cl assification sheet ..... 39
Fi gure (cont.) ..... Page
21. I rregul ar crest shape used for I andi ng condition anal ysis example ..... 48
22. Leapi ng anal ysi s parameters ..... 51
23. El dorado Creek Vaterfall superimposed on steel head leapi ng curves ..... 53
24. Looki ng upstream at El dorado Creek Whterfall, Idaho ..... 54
25. Fi sh swiming in reduced vel ocities near str eanbed ..... 61
26. Looking upstream at Red Cabi n Creek cul vert outl et ..... 72
27. Red Cabi n Creek cul vert outl et superi mposed on chi nook and coho sal non leapi ng curves ..... 76
28. Red Cabi n Creek cul vert outl et superi mposed on pink sal non leaping curves ..... 77
29. Cl assification of Red Cabin Creek cul vert ..... 78
30. Red Cabi n Creek "revi sed" cul vert outl et superi mposed on chi nook and coho sal non l eapi ng curves ..... 81
31. Red Cabi n Creek "revi sed" cul vert outl et superi mposed on pink sal non leaping curves ..... 82
32. Looki ng upstream at Chuckanut Creek waterfal I ..... 83
33. Pl an vi ew of obstructi ng rock near Chuckanut Creek waterfall crest ..... 83
34. Pl an vi ew sketch of Chuckanut Creek waterfall ..... 84
35. Cross sectional areas of station I + $\infty$ and $1+07$ at Chuckanut Creek waterfal I I ooki ng upstream ..... 86
36. Chuckanut Creek fall superimposed on steel head l eapi ng curves ..... 90
37. Chuckanut Creek fall superi mposed on coho sal non l eapi ng curves ..... 91
Fi gure (cont.) ..... Page
38. Chuckanut Creek fall superi mposed on chum sal non l eaping curves ..... 92
39. Cl assification of Chuckanut Creek waterfal I ..... 93

# SUMMARY OF RESEARCH PRO ECT REPORTS <br> Bonneville Power Admini stration <br> BPA Fi sheri es Project 82-14 <br> DEVELOPMENT OF NEW CONCEPTS IN FI SH LADDER DESI GN <br> Conducted at the <br> Al brook Hydraulics Laboratory <br> Department of Ci vil and Envi ronment al Engi neering Whshi ngton State Uni versity Pul I man, Wishi ngt on 99164-3001 

Proj ect Peri od: J une, 1982- Oct ober, 1984

1. Orsborn, John F. 1985. SUMMARY REPORT

A synopsis of the project components was prepared to provide an overvi ew for persons who are not fisheries scientists or engi neers. Thi s short report can be used al so by technical persons who are interested in the scope of the project, and as a summary of the three main reports. The contents includes an historical perspective on fishway design which provides the basis for this project. The maj or project accomplishments and significant additions to the body of know edge about the anal ysi $s$ and desi gn of fi shways are di scussed. In the next section the research project organization, objectives and components are presented to familiarize the reader with the scope of this project.

The summary report concl udes with recomendations for assi stinq in the enhancement and restoration of fisheries resources from the perspective of $f i s h$ passage problens and their sol ution. Promisinq research topics are incl uded.
2. Aaserude, Robert G and John F. Orsborn. 1985. NEW CONCEPTS IN FISHADDER DESI GN.--Results of Laboratory and Fi el d Research on New Concepts in Weir and Pool Fishyays. (VIth contributions by Diane Hiliard and Val erie Monsey).

The dri vinq force behind this project, and the nucl eus from which other project components evol ved, was the desire to utilize fish leaping capabilities nore efficiently in fishway desiqn. This report focuses on the el enents which were central to testing the premise that si gni ficant improvenents could be made in water use, costs and fish passage efficiencies by devel opinq a new weir and pool fishyay. These el ements incl ude: historical review of available infornation; optimization of weir geonetry; fluidjet nechani cs; air entrai nment; energy di ssi pation in the pool chanber; and fish capabilities. The new weir and pool chanbers were tested in the field with coho and chum sal non.
3. Orsborn, John F. and Patrick D. Powers. 1985. FI SHMAYS-AN ASSESSMENT OF THEIR DEVELOPMENT AND DESI GN (Vth contributions by Thonas $W$ Bunstead, Sharon A. Kinqer, and Vilter C. Mh.)

Thi s vol une covers the broad, though rel ativel y short, hi storical basis for this project. The hi storical devel opnents of certain desi qn features, criteria and research activities are traced. Current design practices are summarized based on the results of an international survey and intervi eus with agency personnel and consultants. The fluid mechanics and hydraulics of fishway systens are di scussed.

Fishuays (or fishpasses) can be cl assified in tuo ways: (1) on the basis of the method of water control (chutes, steps [ladders], of slots); and (2) on the basis of the degree and type of water control. This degree of control ranges froma nat ural waterfall to a totally artificial environment at a hatchery. Systenatic procedures for anal yzing fishways based on thei r-confiquration, species, and hydraulics are presented. Di scussi ons of fish capabilities, energy expendi ture, attraction flow stress and other factors are included.
4. Powers, Patrick D. and John F. Orsborn. 1985. ANALYSI S OF BARRI ERS TO UPSTREAM M GRATI ON --An I nvesti gation into the Physi cal and Biol ogi cal Conditions Affecting Fish Passage Success at Cul verts and Vhterfalls.

Fish passage problens at natural barriers (vaterfalls) and artifici al barriers (cul verts) are caused by excessive vel ocity and/ or excessi ve hei ght. By determining which geonetric or hydraulic condition exceeds the capabilities of the fish, the nost promising correction can be made to the barrier.

No waterfall classification system was found in the literature which could be applied to fish passage problens. Theref ore a cl assification system was desi gned whi ch describes: (1) dounstream approach conditions at the base of the barrier; (2) central passage conditions as in a high vel ocity chute of the leap over a falls; and (3) upstream conditions where the fish exits the high vel ocity chute or lands after leaping past a barrier.

The primary objective was to lay the foundation for the anal ysis and correction of physical barriers to upstream migration, with fishways beinq one of the alternative sol utions. Although many passage improvement projects are economically small compared with those at large dans, each year milions of dollars are spent on sol ving these snaller passage problens-- and someti nes the noney is wasted due to poor problem definition. This report will assist in both the definition of the problem and sel ection of the nost beneficial sol ution.

## ACKNOVLEDGMENTS

(BPA Fi sheri es Project 82-14)
The financial support for this project was provided by the Bonneville Power Administration, Portland, Oreqon. The project was initiated prior to the tine that the Fish and Wildife Proqram of the Northwest Power Planning Council was devel oped and initiated. The results of this project have al ready found, and will continue to find, nany opportunities for application to the problens addressed in the NPPC Fish and Vildife Proqram for the Col unbia Ri ver Basi n .

We wish to express our qratitude to numerous active and retired aqency personnel and consultants who responded to our desi qn questionnai re and participated in personal intervievs. The names and addresses of many are listed in other parts of this report, but those who were especially hel pf ul i ncl ude:

F. J. Andrew - I nter national Pacific Sal non Fi sheri es Conmi ssi on Doug Arndt - NPD, USCE<br>Bill M Bakke Director, Trout and Sal non Resource Center<br>Ken Bates - VDOF<br>MIo Bell - Consultant<br>Ted Bj ornn - I daho Cooperative Fi shery Unit<br>Roger Boqden - VDOG<br>Bert Carneqi e - ODFW<br>Whyne Dal ey - KCM<br>Brian Dane . Canadian Fi sheries and Marine Service<br>M ke Dell . Grant Co. PUD<br>I van Donal dson - Retired<br>Edvard Donahue - Fi sh Pro Consultants<br>Ray Fi nni gan - Canadi an Fi sheri es and Mari ne Servi ce<br>M Fretuel I - International Pacific Sal non Fi sheries Comission<br>Jim Haas - ODFW<br>Thonas M Hunes . Consultinq Vestern, Ltd., Cranbrook, B.C.<br>John Hut chi ns - Anderson, Bj ornstad, Kane and J acobs<br>Chris Kellogg - Corrosi on Controllers, Inc.<br>Christine Mbfitt . I daho Cooperative Fi shery Unit<br>Bob Pearce - NMFS<br>JimRis . South Dakota Dept. of Gane, Fish and Parks<br>Charles Ritzi . Consultant, Winthrop, Mai ne<br>Emil Sl atick - NMFS<br>Huqh Smith - Retired<br>Gerry Tayl or - B. C. M ni stry of the Envi ronment<br>Q ark Thompson - Retired<br>Chuck Whner - Retired<br>Dick Weaver . Retired<br>Russ Vebb - VDOF

Our special acknow edgenent of hel pf ul cooperation goes to the Whshi nqton Department of Fisheries for the use of its hatcheries for field testing of our new fishuay desiqns In particular we wish to thank Dennis Popochock for use of the Johns Creek facility.

The advi ce, guidance, criticism and support of our BPA contracting officer's representative, Thonas $S$. Vogel, were extrenel y important to the success of this project. His sugqestions at critical points were very beneficial.

The project personnel were:
Robert G Aaser ude Ann E. Martinson
Robi $n$ Bayl ey
Thonas W Bunstead
Kathy Cox
Di ane Hiliard
Peter Hines
C. J. Khi sty

Shar on A Klinqer

Whter C. Mh
( Co- Princi pal I nvesti gat or)
Val erie Monsey
B. J. Nai $k$

John F. Orsborn
( Princi pal I nvestigat or)
Patrick D. Powers

## ANALYSI S OF BARR ERS TO UPSTREAM FI SH M GRATI ON

## ABSTRACT

This paper presents a detailed anal ysis of waterfalls and cul verts as physi cal barriers to upstreammigration by sal non and trout. Anal ysis techni ques are based on conbi ning barrier geonetry and stream hydrol ogy to define the existing hydraulic conditions within the barrier. These conditions then can be compared to known fish capabilities to determine fish passage success. A systematic classification systemis devel oped which defines the geometric and hydraulic parameters for a given stream di scharge. This cl assification systemis organi zedin a format that can he used to catal og barriers in fisheries enhancenent prograns. The anal ysis compares hydraulic conditions and fish capabities in detail, as the fish enters the barrier, attenpts passage and exits the barrier. From this comparison the paraneters which prohi bit passage can be determined. Hydraulic conditions are a function of the barrier qeonetry and stream hydrol ogy, and the stream flow is constant at the tine each step in anal ysis is performed. Therefore, the barrier geonetry must be nodified to alter the hydraulics to neet fish capabilities. Modifications can he accomplished by: installing instream "control " structures which deflect the flow or raise pool levels; blasting to alter or renove rock; and installing a fishway to bypass the barrier. Mbdifications should not be attempted until the anal ysis defines the excessi ve paraneters which should be nodi fied.

## I NTRODUCTI ON

When adult sal non and steel head trout enter freshwater, naturing fish stop feeding and rely on energy reserves stored in body fat and protein to carry them through migration and spawning. The rate of sexual maturity is established by heredity, and cannot adj ust to del ay. Barri ers whi ch cause excessive del ay and abnornal energy expenditures can result in nortality either during the migration or in the spawning areas. These barriers can be natural or artificial, as nell as physical, chemical or thernal. Nat ural barriers consist nainly of waterfalls and debris $\mathbf{j}$ ans, and artifici al barriers consi st mai nl y of dans, cul verts and $\mathbf{l o g} \mathbf{j}$ ans. This study will consi der onl $y$ those barriers consi sting of waterfalls or cul verts that partially or totally obstruct sal non and trout upstream migration. In addition to existing barriers which del ay or totally block upstream migration, spawninq areas which were originally accessible have becone i nundated by reservoi rs and other instream nodifications. Therefore, existing barriers must be nodified to further open the "window of passage" to spawni ng areas.

The potential for deriving benefits from alleviatinq barriers to migration is high, but in the renote areas where these barriers usual ly exist, the cost of traditional fish ladders and construction nethods usually out wei gh the benefits to be gai ned. Sone barriers lend thensel ves to simple sol utions such as basting a series of pool sto assist fish passage. Rut in many cases an anal ysis of the geonetric, geol ogic, hydroI ogic and hydraulic characteristics needs to be made so that alternative
sol utions can be generated and compared. St uart (1964) suggests that the behavi or of minating sal nonids can be correl ated di rectly with the hydraulic conditions in the stream channel. This rel ationshipis the basis for this study.

Because streamflous and site geonetry control stream width, depth and vel ocity, the hydraulic parameters are a function of the geonorphic and hydrol ogic paraneters. Gen the geonorphic conditions at a site, consi dered to be constant, and the hydrol ogic conditions which are variable within a range of val ues, an anal ysis of the hydraulic conditions rel ated to fish capabilities can determine the impact the barrier has on fish passage success. These rel ationships can be seen in the flow chart in Fi gure 1. The objectives of this study are to:

1. devel op a cl assification system for uaterfall and cul vert barri ers;
2. devel op nethods for anal yzing harriers using site geonetry, hydrol ogy and hydraulics, and by rel ating the hydraulics to fish capabilities; and
3. generate "parameter specific" sol utions to assist fish past barriers without the installation of apical fishway.

It is not within the scope of this study to devel op anal ytical methods for nore complex barrier structures but to devel op the conceptual basis for these nethods. Compl ex barrier anal ysis hould require extensi ve fiel nork and/ or physical nodel testing. It is the author's intention to use this study as a foundation to further devel op anal ytical nethods for anal yzing nore compl ex barrier systens.


Analysis Path
— — Modification Path

Fi gure 1. Fl ow chart anal ysis of a migation barrier.

Because of the wide variations in the forns of barriers, a cl assification systemis requi red to facilitate the anal ysis and subsequent qeneration of sol utions to fish passage problens. Evidence of waterfal I cl assification in the literature points only to a system based on genetic grounds (Fai rbridge, 1968). The writer is not aware of a systematic" cl assification system of waterfalls which correl ates fish passage success. The requi rements for an adequate classification system include the fol I ow ng:

1. site geonetry,
2. hydraulic conditions, and
3. fish passage success.

Based on these three factors a cl assification systemfor naterfall and cul vert barriers was devel oped to ai de in assessing, anal yzing and nodi fying barriers.

Nat ural rock barriers can be in the formof falls, chutes or cascades. Falls (Fig. 2) are characteristic of steep (commonly vertical) overflow sections where the impact of the falling water scours a deep pl unge pool at the foot of the falls. Falls form el evation barriers where the difference in water surface el evation bet ween the upstream water surface and the pl unge pool, and/ or the horizontal distance from the falls crest to the pl unge pool exceeds the leaping capabilities of the pertinent fish species. Often the leaping efficiency of the fish is constrai ned by unf avorable pl unge pool conditions. If the pool is shallow the falling water will strike the bottom creating vi ol ent pool conditions, thus affecting the fishes' orientation for leaping. Even if a fish has successfully leaped a
falls, it can be swept back due to high vel ocities and/ or shal low depths above the falls crest. A cantilevered cul vert outfall (Fig. 3), where the fish must leap to enter the cul vert, is similar geonetrically to a fall. The onl $y$ difference is the nature and geonetry of the bed over whi ch the nater flows.


Chutes (Fig. 4) are characterized by steep, sloping, rough open channel s, offering the fish a high vel ocity medi umin which to swimwithout resting areas. Chutes form vel ocity barriers where the water vel ocity near the downstreamentrance to the chute exceeds the fishes' swi ming speed. Often a standing wave will devel op at the foot of the chute. If the downstream pl unge pool is shallow, the standing wave may formtoo far downstream for the fish to rest before bursting into the chute. Even if the vel ocities down in the chute are within the fishes' swining speed, the depth of flow and slope length could prohi bit passage. Al so, chutes often pass a bul ked nass of water and entrai ned air which offers a poor nedi um
for swiming. Stuart (1964) suggests that when flowing water entrains air, the density of the mixture will be reduced and will detract fromthe propul si ve poner of the fishes' tail and diminish the buoyancy of the fish. Air entrainnent al so reduces the stimus of attraction flows. Chutes with steep slopes are very similar to culverts (Fig. 5) where the fish must swim a long slope length. The difference again is in the nature of the bed over which the water flows, and the shape of the flow area. Culverts do not offer an irregul ar nat ural boundary which can provide an occasi onal resting pl ace.


Fi gure 4. Profile view of a steep/ high vel ocity chute.


Figure 5. Profile view of a steep/ high vel ocity cul vert.

Cascades (Fig. 6) are characterized by a reach of stream where Iarge instream roughness el enents, such as boul ders and jutting rocks, obstruct and/ or churn the flowinto violently turbulent white water. Cascades often present fish with high vel ocities, excessi ve turbulence, and orientation difficulties which nake it impossibe for afish to effectively use allits swiming power. If the rouqhness el ements (or boulders) are large, they will often create periodic resting areas withinthe cascading reach.

Jackson (1950) noted that the sockeye sal non trying to pass Hell's Gate on the Fraser River in British Col unbia al nost succeeded in "eroding their noses back to their eye sockets" by contact with the bank while trying to nai nt ai $n$ equilibriumin the turbul ent water.


Fi gure 6. Pl an view of a cascade.

Pi oneering works in the field of anal yzing waterfall barriers has been conducted nostly by fisheries biol ogi sts through nethods such as field sampling by el ectrofishing, skindiving or $\mathbf{j}$ ust personal observation of fish passage. No significant research concerning the fluid nechanics of waterfalls has been conducted. There has been consi derable work done on cul verts to rel ate depth, vel ocity and di scharge rel ationships, as reported by Dane (1978), Evans \& Johnston (1980) and others. The obstruction at Hell's Gate focused a considerable anount of attention on the vel ocities and turbul ence that sockeye sal non were facing. In that study, ri ver vel ocities were neasured by two nethods:

1. the hi ghest average vel ocities fromthe river discharge and the area of snallest cross section, and
2. average mid-stream surface velocities using a float. Highest average vel ocities ranged from 12.9 to 17.5 fps , but Jackson (1950) noted that these computed vel ocities were inaccurate because of the extremely rough channel $s$ at Hell's Gate. The concl usi on was that the conbi nation of turbulence and high vel ocities prevented the passage of I arge runs of sockeye sal non. $\quad$ a ay (1961) suggests the following engi neering field work that is requi red before design and construction of a fishway at a fall can be initiated:
3. topographic surveys;
4. record magnitude, di rection and location of vel ocities;
5. I ocate points of turbulence, upuellings and the intensity and I ocation of points of surge and how they rel ate to fish behavi or; and
6. ri ver di scharge neasurements.
day al so suggests various types of fishways that can be installed at natural obstructions. He notes that because of the wide range of flous at a natural obstruction the vertical sl ot type of fishway should be used because it can accept a wide range of water level fluctuations while still working effectivel $y$.

Mbst of the design work on assisting fish past waterfalls without the installation of a fishway rests in project files. Many of these waterfalls were observed to be barriers due to shallow depths, high velocities and/or el evation drops, and mere nodified by blasting to try to reduce the
magni tude of these constraints to passage. This study will devel op detailed anal ysis procedures to generate "paraneter specific" sol utions to the "real passage problens" at barriers.

## Swi ming Speeds

The objective of this section is to document val ues for the upper Iinits of swiming speeds, leaping capabilities and swining distances for adult sal non and steel head trout, and to eval uate their performance in a format usef ul for anal yzing barriers. In order to differentiate bet ween uater vel ocity, fish vel ocity and rel ative vel ocity of the fish to the uater, the term"speed" will be used to denote the rate of notion of the fish as an object with respect to a reference pl ane. Rel ative speed will denote the difference bet ueen fish speed and the vel ocity of the water, that is:
$V R=V F-V W$
where $V R=r e l$ ative speed of the $f i s h$ to the water; $V=$ speed of the $f i s h ;$ and $\mathbf{W W}=$ vel ocity of the water.

Ranqes of speeds are classifiedin the literature accordinq to the function, or rel ative speeds which fish can maintain. The classification of speeds publ ished by Hoar and Randal I (1978) which will be used in this study, is:
sustai ned - normal functions without fatigue,
prol onged - activities lasting 15 seconds to 200 mintes which result in fatigue
burst - activities which cause fatigue in 15 seconds or less.
Ranges of speeds for these classification are shown in Table 1 from Bell (1973).

Table 1. Fi sh speeds of average size adult sal non and steel head trout as reported by Bell (1973).

|  |  | Fish Speed (fps) |  |
| :--- | :---: | :---: | :---: |
| Speci e | Sustained ${ }^{\text {b }}$ | Prolonged | Burst |
| Steel head | 0.4 .6 | $4.6-13.7$ | $13.7-26.5$ |
| Chi nook | $0-3.4$ | $3.4-10.8$ | $10.8-22.4$ |
| Coho | $0-3.4$ | $3.4-10.6$ | $10.6-21.5$ |
| Sockeye | 0.3 .2 | $3.2-10.2$ | $10.2-20.6$ |
| Pi nk \& Chuma | 0.2 .6 | $2.6-7.7$ | $7.7-15.0$ |

[^0]Bell suggests that fish normally empl oy sustai ned speed for novenent (such as migration), prol onged speed for passage through difficult areas, and burst speed for feeding or escape purposes.

For determining fish passage success over uaterfalls and through culverts, some percentage of the upper limit of burst speed will be used which will depend on the physical condition of the fish. To determine actual val ues of these percentages, a study was conducted on coho and chum sal non swi ming up a high vel ocity chute at Johns Creek Fish Hatchery near Shel ton, Whshington (see Appendi x II). Fromthis study it was concl uded that nost of the time the sal non were swinming at $\mathbf{5 0 \%} \mathbf{7 5 \%}$ and $\mathbf{1 0 0 \%}$ of their maxi mum burst speeds suggested by Bel l(1973), depending on the condition of the fish. These percentages will be used to defined coef $f i c i e n t$ of $f i s h$ condition $\left(C_{f c}\right)$. Values $f$ or $C_{f c}$ are given in Table 2. with the correspondi ng characteristics of each. From Table 2. the actual speed that should be used for passage anal ysis is:

$$
\begin{equation*}
\mathbf{V F}=\mathrm{VFB}\left(\mathrm{C}_{\mathrm{fc}}\right) \tag{2}
\end{equation*}
$$

where VFB = maxi mumburst speed suggested by Bel I (1973) Table 1 ; and $\mathrm{C}_{\mathrm{fc}}$ $=$ coefficient of fish condition, Table 2.

Table 2. Coefficient of fish condition ( $C_{f c}$ ). Val ues based on observations and data taken for coho and chum sal mon at Johns Creek Fish Hatchery near Shel ton, Kishi ngt on, December, 1983.

Fi sh Condition
Coefficient ( $\mathrm{C}_{\mathrm{fc}}$ )
Bri ght; fresh out of sal t water or
still a long di stance from spawni ng
grounds; spawni ng col ors not yet
devel oped $\quad 1.00$

Bright; fresh out of salt water or still a long di stance from spawning1.00 grounds; spawni ng col ors not yet devel oped

Good; in the river for a short time; spawning col ors apparent but not $0.50^{\mathrm{a}}$ fully mature; very close to spanning grounds
a $\mathrm{C}_{\mathrm{fc}}=0.50$, corresponds to the upper limit of prol onged speed from Table 1.

## Leaping Capabilities

When fish leap at waterfalls, their notion can best be described as projectile notion (i.e. curved tuo-di nensi onal notion with constant accel eration). Neglecting air resi stance, the equations for projectile notion are:

$$
\begin{aligned}
& x=\left(v_{0} \cos \theta\right) t, \text { and } \\
& y=\left(v_{0} \sin \theta\right) t-(1 / 2) g t^{2}
\end{aligned}
$$

where $x=$ horizontal di stance the projectile travel $s, y=$ vertical distance the projectile travels, V , = initial vel ocity of the projectile, $8=$ angle from the horizontal axis the projectile is fired, $t=t i n e$ and $q=$ accel eration of gravity ( $32.2 \mathrm{ft} / \mathrm{sec}^{2}$ ). Rewriting the equations for x and $y$ in terns of the components that rel ate to fish leaping at a waterfal yi el ds:

$$
\begin{align*}
& \mathbf{X L}=[V F(\cos \theta L)] t \text { and }  \tag{3}\\
& \mathbf{H}=[V F(\sin \theta L)] t \cdot(1 / 2) g t^{2} \tag{4}
\end{align*}
$$

where $\mathrm{XL}=$ hori xontal distance or range of the leap at sone tine ( $\mathbf{t}$ ), $\mathbf{H}=$ hei ght of leap at sone tine $(\mathrm{t})$, $\mathrm{VF}=\mathrm{fi} \mathrm{sh}$ speed, $\mathrm{AL}=$ angle of leap from the plunge pool, and $\mathbf{g}=$ accel eration of gravity acting downwards (32.2 $\mathrm{ft} / \mathrm{sec}^{2}$ ). By conbining equations (3) and (4) and eliminating t fromthem ue obtai $n$ :

$$
\begin{equation*}
\mathbf{H}=(\tan \theta L) X L \cdot g(X L)^{2} / 2(V F \cos \theta L)^{2} \tag{5}
\end{equation*}
$$

which rel ates H . and XL and is the fish trajectory equation. Since VF, $\theta \mathrm{L}$ and $g$ are constant for a given leap, equation (5) has the parabolic form of:

$$
H=b(X L) \cdot C(X L)^{2}
$$

Hence the trajectory of a fish is parabolic. Equation (5) is plotter! in Fi gures 7, 8 and 9 for six species of sal mon and trout leaping at angles of HO, 60 and 40 degrees. These leaping curves will be utilized later to anal yze leaping conditions at barrier. At the highest point of the fish's leap, the vertical component of the vel ocity is zero, that is:

$$
V F_{y}=V F(\sin \theta L) \cdot g t=0
$$

Sol ving this equation for $\mathbf{t}$ gi ves:

$$
t=V F(\sin \theta L) / g
$$



Figure 7. Leaping curves for steelhead trout.


Figure 8. Leaping curves for chinook, coho and sockeye salmon.


Figure 9. Leaping curves for pink and chum salmon.

Substituting this equation for $t$ into equation (3) and (4) yi el ds:

$$
\begin{align*}
& \mathbf{H}=(V F(\sin \theta L))^{2} / g \cdot(1 / 2)\left(V F(\sin \theta L)^{2}\right) / g \\
& \mathbf{H}=(V F(\sin \theta L))^{2} / 2 g  \tag{6}\\
& \mathbf{X L}=V F^{2}(\cos \theta L)(\sin \theta L / g) \tag{7}
\end{align*}
$$

Equations (6) and (7) gi ve the naxi num hei ght of the fish's leap and the horizontal di stance travel ed to the maxi mum hei ght.

Bell (1973) suggests the following formala for computing velocities at which fish leave the water surface:

$$
\mathbf{V F}=(2 \mathrm{~g}(\mathrm{HL}))^{0.5}
$$

Sol ving this equation in terns of the leap hei ght (H) gives the same result as equation (6), using a leaping angle of $90^{\circ}$ to the water surface. Aaser ude (1984) noted that to determine the true leapi ng hei ght above the nater surface, the length of the fish should be added to equation (6) because the fish uses its full propulsive power up until the point the fish's tail leaves the water, and once in the air skin drag can he negI ected. Si nce equation (6) and (7) do not incl ude the additive effects of fish length or an upward vel ocity component often found at the foot of a waterfall in the form of a standing wave (Stuart, 1964), they will be used here as conservative val ues fromthe accepted literature.

## Swi ming Perf or nance

Swi ming perfornance is a neasure of the speed which a fish can mai ntain over a period of time (endurance). The distance a fish can swim is a function of the water vel ocity, fish speed and fatigue time. Bell
(1973) suggests that burst speed can be naintai ned-for an esti nated 5 to 10 seconds. Rel ating this range of fatigue tine to the range of burst speeds from Table 1, the swi ming di stances can he computed from

$$
\begin{equation*}
L F S=(V F-V W) T F \tag{8}
\end{equation*}
$$

where LFS = length the fish can swim VF = fish speed, WW= water vel ocity, and $T F=$ time to fatigue. Equation (8) is plotted in Figures 10, 11 and 12 for six species of sal mon and trout. An example cal cul ation will show how these figures were deri ved.

Speci e: steel head
Burst Speed Range: 13.7 to 26.5 fps
Fati gue Ti ne Range: 5 to 10 seconds
Water Vel ocity: 10 fps
Coefficient of Fi sh Condition: 0. 75

$$
\begin{aligned}
& \text { LFS }=\left[\begin{array}{lll}
26.5 & (0.75)-10
\end{array}\right] 5=49 \mathrm{ft}, \text { or } \\
& \text { LFS }=\left[\begin{array}{lll}
13.7 & (0.75)-10
\end{array}\right] 10=3 \mathrm{ft}
\end{aligned}
$$

Ther ef ore the naxi mum di st ance an adul $t$ steel head trout can swi mi ven the condition of the $\mathrm{fi} s h$ and a mean water vel ocity of 10 fps , is 49 ft . This cal cul ation assumes the water depth to be great enough to subnerge the fish and that no air is entrained in the flow The results are in Fig. 12.

Evans and Johnst on (1980) suggest that the di stance the fish can swim agai nst a gi ven water vel ocity is best defined by the curves prepared by Zi ener (1961) whi ch reflect the swi mming perfor nance of sal mon, st eel head, and snaller trout (Fig. 13). Thi s curve was devel oped assuming a rel ative fish speed (VR) of 2.0 fps. From the study reported in Appendix II, it was determi ned that the average rel ative speeds for coho and chum sal non swi ming up the vel ocity chute nere 1.9 and 2.1 fps respectivel $y$, but
ranged from val ues of 1.0 to 3.0 fps . Because of this wide variation, it appears that cal cul ating the naxi mum distance a fish can swimbimply using rel ative fish speed does not accurately describe the nagnitude of a single passage attempt.


Fi gure 10. Mexi mum swiming di stance for steel head trout under three fish condi ti ons.


Fi gure 11. Maxi mum sui ming di stance for chi nook, coho and sockeye sal non under three fish conditions.


Fi gure 12. Maxi mum swi ming di stance for pink and chum sal non under three fish conditions.


Figure 13. Swimming performance of salmon and trout from Evans and Johnston (1980). Curve developed by Ziemer, State of Alaska, Department of Fish and Game.
"Any factor interrupting or affecting the supply system (oxygen intake) as well as those affecting the propul sive systemitself, affects swi ming performance" (Vebb, 1975). Both of these conditions exist when there is insufficient water depth to subnerge the fish while it is swim minq. Partial subnergence impairs the ability of the fish to generate thrust normally accomplished by a combi nation of body and tail novement. Also, if its gills are not totally subnerged, they cannot function efficiently, pronoting oxygen starvation while al so reducing the fish's ability to mai ntain burst activity. Evans and Johnston (1972) suggest a minmm water depth of 6 in for resi dent trout and 1 ft for sal non and steel head. Dryden and Stein (1975) state "In all cases, the depth of water should be sufficient to subnerge the largest fish attempting to pass." This limitation will be used in anal yzing barriers, because this nould be the mi ni mum depth requi rement without affecting the fish's propul si ve system

It is important to note that the val ues of fish speeds suggested by Bel l (1973) are for fish swining in water without entrai ned air (black water). In extreme cases of sufflation the density of the nater/air mixt ure (white water) will be reduced and detract fromthe propul si ve power of the fish's tail, reducing its speed. To summarize the equations that describe the capabilities of fish in terns of swi ming speed, leaping capabilities and swiming performance, Table 3 is provided with a nomencl at ure of terns.

Table 3. Fi sh capability equations for swiming and leaping.
Type of Mbtion Equation

$$
\begin{equation*}
\mathbf{V R}=\mathbf{V F} \cdot \mathbf{W} \tag{1}
\end{equation*}
$$

Swi ming

$$
\begin{align*}
& \mathbf{V F}=V F B\left(C_{f c}\right)  \tag{2}\\
& \mathbf{L F S}=(V F \cdot V W) T F  \tag{8}\\
& \mathbf{H}=[V F(\sin \theta L)]^{2} / 2 g  \tag{6}\\
& X L=V F^{2}(\cos \theta L)(\sin \theta L) / g \tag{7}
\end{align*}
$$

where:

```
VR = rel ati ve swi mming speed of the fish,
VF = fish speed,
WW = water vel ocity,
VFB = burst speed of fish,
C fc = coefficient of fish condition,
LFS = maxi mum swi mming di stance of fi sh,
TF = time to fatigue,
H. = hei ght of l eap,
XL = horizontal di stance of leap at fish's high point,
0L = angle of l eap from water surface, and
9 = accel eration of gravity (32.2 ft/ sec}\mp@subsup{}{}{2})
```


## CLASSIFICATION OF BARRI ERS

To facilitate anal yses and subsequent generation of solions to fish passage problens aclassification system needs to be introduced to define the parameters invol ved in the anal ysis. The objective of this chapter is to devel op a systenatic nethod for classifying barriers based on the conditions that affect fish passage success. Barrier cl assification sheets will be devel oped to enable fisheries personnel to make use of the classification systemin fisheries enhancenent prograns, both to catal og waterfall and cul vert barriers, and to design their nodifications.

Evi dence of classification for waterfalls in the literature was found only in terns of the site geonorphol ogy (or origin of formation) (Fai rbrige, 1968). Nb classification of waterfalls could be found in the literature that correl ated site hydraulics or fish passage success to geonetry. Pryce-Tannatt (1937) noted, "Obstructions are many and varied. It nould be usel ess to attempt to cl assify them beyond di stingui shi ng bet ween the comparativel $y$ mild, the definitely difficult, and the com pletely impossible." Dane (1978) suggests aclassification of obstructions for cul vert barriers based on blockage as follous:

1. Total--impassable to all fish all of the tine,
2. Partial--impassable to sone fish all of the tine, and
3. Tenporary-impassable to all fish sone of the time.

The cl assification system devel oped for this st udy will anal yze the site geonetry and hydraulics, and how they interrel ate to fish passage success. Because waterfalls in nature consist of such a wide range of
geol ogic and hydrol ogic conbi nations, a classification systemfor waterfalls shouldinclude several components, each of which describes waterfalls differently.

The cl assification system proposed here consists of four components: (1) cl ass, (2) type, (3) magnitude and (4) di scharge, extending from general to specific (Table 4). $\underline{\text { Class }}$ describes the flow patterns, number and characteristics of fish passage routes and site geonetry in plan view The class is determined by observing the characteristics in Table 4. Type describes the bed slopes, pool depths and geonetry of the barrier in I ongitudi nal profile, and ther ef ore requires an engi neering survey of the barrier site. Magnitude describes the el evation differences, nater vel ocities and slope lengths the fish must negotiate. Because the class, type and nagnitude of the barrier will vary with di scharge, the fourth itemfor classification will be to accurately estimate or measure the di scharge at the tine of observation.

A so, a degree of passage difficulty rating will be applied, based on a range from 1 to 10 , one being the least difficult to pass and ten the nost difficult. This is a subjective comparative rating of barrier cl ass characteristics in reference to fish passage difficulty which is independent of barrier hei ght and vel ocity. The rating is based on the following assumptions:

1. The differential el evation and water vel ocities are within the swiming and leapinq capabilities of the species in question.
2. At hi gher swiming speeds ( $>9 \mathrm{fps}$ ) leaping is nore ener getically effici ent that swi ming (Blake, 1983).
3. Fish will be attracted to the area of hi ghest monentum (flow $x$ vel ocity) when migrating upstream therefore if multiple paths arc present the fish may try to ascend the one with the hi ghest attraction which will be created by the hi ghest conbi nation of drop, vel ocity, and di scharge.
4. Turbul ent flow (or white water) with surges, boils and eddi es nake it difficult for fish to orientate thensel ves and nake full use of thei $r$ swi ming power.

Table 4. Characteristics of barrier cl assification components.

| Cl assifi cation Conponent | Characteristics |
| :---: | :---: |
| Cl ass | Site geonetry in plan view Flow patterns <br> Number of fish passage routes. Characteristics of fish passage routes. |
| Type | Site geonetry in profile. <br> Bed sl opes <br> Pool depths |
| Magni t ude | El evation drops Vater vel ocities Sl ope lengths |
| Di scharge | The flow rate at which the class, type and/ or magni tude were neasured. |

## Cl ass

Whterfall barriers in nature are usually found in three forns; falls, chutes and cascades. From the author's field observations of many harriers, it appears that fall barriers are found either as single of multiplefals, chutes as either simple of complex, and cascades as boulder cascades or turbulent cascades. Conbinations of falls and chutes will be denoted as compound barriers. These barrier $\mathbf{c l}$ asses and thei $\mathbf{r}$ characteristics are shown in Table 5 with their corresponding rating for degree of passage difficulty.

A single fall has the lowest degree of difficulty rating (DDR) because the fish has only one route to choose, and it leaps to pass. To determine the actual val ue of the DDR of 1 to 3 , the upstream and downstream conditions must be anal yzed. This will be done when barriers are classified by type. Multiplefalls (falls in parallel) have a higher DDR than single falls because the fish has several routes from which to choose, and nost likely will be attracted to the fall with the highest flow moment um (Stuart, 1964). Si mple chutes have a slighty hi gher DDR than single falls because at high swining speeds ( $>9 \mathrm{fps}$ ) leaping is more energetically efficient than swiming. Conpl ex chutes have a hi gher DDR than simple chutes because the fish's propul sive power is reduced in white water. Poul der cascades have a slightly higher DDR than multiple falls because the fish have problens getting orient to lleap due to the turbulent resting areas. This anal ysi s can be conti nued, comparing each barrier class based on the four original assumptions, for the degree of difficulty ratinq system

Type
To classify barriers by type, concept ual nodel s will he used which show the geonetric and hydraulic rel ationships that are critical to fish passage success. Fiqures 14 and 15 show concept ual nodel $s$ and the notation used in profile view of a fall and chute respectively. These fiqures are not comprehensi ve for nat ural conditions, but the geonetric dimensions apply and can fit any situation. Cascades are not included here because to determine the type of barrier requires measurements of bed opes and pool depths. If these neasurements could be made in a cascading reach, then a
cascade would si mply consist of a series of falls-and/or chutes and there nould be several different types for one barrier class (i.e. several falls and/ or chutes within a cascade).

Table 5. Subj ective comparative rating of barrier class characteristics in reference to fish passage difficulty, independent of barrier hei ght and vel ocity. Assunes passage success by strongest fish.

| Class | Characteristics Degree | of Difficulty Range |
| :---: | :---: | :---: |
| Single falls | Entire stream flows through a single opening offering one path for fish passage. | 1-3 |
| Multiple falls | Fl ow di vi des through two or nore channel s offering the fish with several passage routes of varying difficulty. | 3-5 |
| Si mple chute | Unvarying cross sections and constant bottomsl ope (steep), with supercritical flow at all stages | 2-4 |
| Compl ex chute | Varying cross sections, several changes in bed sl ope and/ or curved al ignnent in plan vi ew White water at all stages. | 4-6 |
| Boul der cascades | Large instream boul ders which constrict the flow creating I arge head I osses from upstreamto dounstreamsides of boul ders. Internedi ate resting areas in very turbulent pools. | 5-7 |
| Tur bul ent cascades | Large instream roughness el enents or jutting rocks which churn the flow into surges, boils, eddi es, and vortices. No good resting areas. | 7-10 |
| Compound | Conbi nations of single falls and/ or si mple chutes (e.g., cul vert with high vel ocity and outfall drop) | 3-7 |



Fi gure 14. Conceptual nodel of a fall, where: $A=$ point on fish exit bed sl ope where critical depth occurs; $B=$ el evation of crest; $C=$ furthest poi nt upstream on bed of pl unge pool ; D = poi nt j ust downstream of falling water (or standing wave) on bed of pl unge pool; Se = fish exit slope; $\mathrm{Sp}=\mathrm{fi}$ sh passage slope; dc = critical depth (point A); dpp = depth in the pl unge pool; dp = depth the falling water pl unges; $X=$ horizontal distance from the crest ( point B) to standi ng wave (point D); FH = fall hei ght; $H=$ change in water surface el evation; and LF = I ength of fish.


Fi gure 15. Conceptual nodel of a chute, where: $A=$ point on fish exit bed sl ope Where critical depth occurs; $B=$ el evation of crest; $C=$ furthest point upstream on bed of pl unge pool ; $D=$ poi nt $j$ ust downstream of standi ng wave (or hydraulic jump) on bed of pl unge pool; Se = fish exit slope; $\mathrm{Sp}=\mathrm{fi}$ sh passage slope; LS $=$ length of slope; dc = critical depth (point A); dw = depth of water; dpp = depth in the pl unge pool ; and H = change in water surface el evation.

The concept ual nodel sin Fiqures 14 and 15 consi st of three zones: (1) the fish exit zone (point A to point Bin Figure 16); (2) the fish passage zone (point R to point C in Figure 17); and (3) the fish entrance zone (point $C$ to point $D$ in Figure 18). The notation used to denote the barrier type is given in these figures, and follows outlininq logic from upstream to downstream The type of barrier will be determined by neasuring the exit slope, passage slope and pl unge pool depth, and sel ectinq three characters from the notation, one each fromthe exit zone, passage zone and entrance zone (e.g. IIB2, uould denote a chute barrier with a positive exit slope and a shal low pl unge pool). From Fi gures 16,17 and 18 it can be seen that there could be any of four different conbi nations of entrance and exit conditions for each of four passage zones; and thus 16 different types of barriers can exist accordingto this classification. These nodel s are shown in Fi gure 19, al ong with the correspondinq degree of passage difficulty rating. The similarities with culvert flow and qeonetry are denoted by dotted lines.

Magni tude and Discharge
To complet the classification, estinates of differential el evations, nater vel ocities, length of slopes, etc., should be included, al ong with estimates of the di scharge at the tine of observation and mation season flows. These two components al ong with the barrier class and type then can be conbi ned toget her to gi ve the final barrier cl assification. A sample barrier classification sheet is shown in Fig. 20. This sheet can be used in the fieldtoclassify barriers and will be hel pf ul in assessinq design nodi fications.

[^1]

Fi gure 16. Fish exit zone notation, where: $I=$ negative or nonsust ai ni ng sl ope at the fish exit (or water inlet). Good conditions for fish, reduced vel ocities, increased water depth ther ef ore good resting areas. II = positive or sustai ni ng sl ope at the fish exit (or water inlet). Poor conditions for fish, increased vel ocities, decreased depths and theref ore poor resting areas.


A (fall)
(si mple)


C (chute/fall) ( compound)

D (fall/chute) ( compound)

Fi gure 17. Fish passage zone notation.



Fi gure 18. Fi sh entrance zone notation, where: 1 = deep pl unge pool. Good conditions for fish, sufficient depth allows di ssi pation of falling water energy and standing wave to devel op. Good I eaping conditions. 2 = shal low pl unge pool. Poor canditions for fish, falling water strikes bed of pl unge pool, creates turbul ence and noves standi ng uave downstream Poor l eaping condi tions.


TYPE: I A 1
DEGREE OF DI FFI CULTY: 1

TYPE: II A 1
DEGREE OF DIFFICULTY: 2


TYPE: I A 2 DEGREE OF DIFFICULTY: 2

Fi gure 19. Concept ual nodel s of barrier types with the corresponding degree of difficulty rating.


TYPE: I B 1
DEGREE OF DI FFI CUTY: 2

TYPE: II B 1
DEGREE OF DI FFI CULTY: 3


TYPE: II B 2
DEGREE OF DIFFICULTY: 4
, Figure 19. (Cont.)


TYPE: ICI
DEGREE OF DIFFICULTY: 3


TYPE: DEGREE OF DI FFI CULTY: 4


TYPE: IC2
DEGREE OF DIFFICULTY: 4


TYPE: II c 2
DEGREE OF DIFFICULTY: 5

Fi gure 19. (Cont.)


TYPE: ID1
DEGREE OF DI FFI CULTY: 5


TYPE: II D 1
DEGREE OF DIFFICULTY: 6


TYPE: I D 2
DEGREE OF DIFFICULTY: 6

TYPE: II D 2
DEGREE OF DIFFICULTY: 7

Figure 19. (Cont.)

## SITE:

LOCATION:


## CLASS:

TYPE:
DEGREE OF DIFFICULTY:
MAGNITUDE:

## DISCHARGE:

## COMMENTS:

Fi gure 20. Sample barrier classification sheet.

## ANALYSI S OF BARRI ERS

For determining fish passage success at waterfall and cul vert barriers the hydraulic conditions must be eval uated and rel ated to fish capabilities for the speci es in question. This chapter contains a detailed anal ysis of

1. pl unge pools (fish entrance zone);
2. I anding conditions (fish exit zone);
3. falls (fish passage zone); and
4. chutes (fish passage zone);
and a di scussi on of the parameters which prohi bit fish passage in cascades.

The nost complicated aspect to anal yze in barriers is determining how white water and turbulence affect the fish's swiming and leaping capabilities. Turbulence in "fluid mechanics" terns occurs when the viscous forces are weak rel ative to the inertial forces. The water particles nove in irregular paths which are neither snooth nor fixed but which in the agqregate still represent the forward notion of the entire stream In open channel flow turbulence is present if the Reynol ds number $R=(V L) / v i s$ I arge, say greater than 500 (Chow, 1959). For this study, turbul ence will be used to visually describe flow patterns which are in a constant changing state of surges, boils, eddies, upwellings and vortices. Jackson (1950), noted turbulence deflects a swing fish fromits course, causing it to expend energy resisting upwellings, eddi es, entrapped air and vortices, which in turn make it impossible for a fish to use its swiming power
effectively. Stuart (1964) noted that the onl $y$ known effect turbul ence has on fish is that the reduced density of the air-nater mixture reduces the propul si ve power of the fish's tail.

Because of the violence in turbulent flow and the effect it has of reducing fish capabilities, it will be assumed for this study that any waterfal that is steep enough to accel erate the flowinto violent turbul ent white water is a total barrier to all fish species attempting to swi $m$ up the barrier. Fish can only pass if they leap and clear the area of t urbul ence bef ore I andi ng.

The anal ysis presented in this section is applicable to all waterfall and cul vert barriers as long as the paraneters needed for the anal ysis can he neasured or estimated within ranges of practical val ues.

## Pl unge Pool Requi renents

The behavi or of alling jet of water as it enters a pool depends to a great extent on the pool depth. If the pool is shallow the $\mathbf{j}$ et may strike the bottom and be deflected downstream A good takeoff pool is essential if fish are to leap to any height. If the turbulent pool conditions created from the falling water impacting the shallow pool prevent a good take off, a rel ativel y lowfall may act as a total barrier. If the pool is deep enough to absorb the falling water, a standing wave will form which assists the fish's leap, in the form of a vertical vel ocity component created by the pool surface (Aaserude, 1984). Ai r bubbl es are created by the mixure of air and water as the falling water impacts the surface and entrains large quantities of ai $r$.

At falls and chutes aeration reduces the impact force of the falling water. The energy of a fall can be nostly dissipated due to transformation of aerated water into mist. At falls of nedi um hei ght, but beyond the range of the fish's leaping capabilities, the impact produced by the emul si on of air and water may be reduced so that a fal se clue to the actual fal hei ght is obtai ned by the fish. St uart (1964) observed nunerous sal mon leapi ng over a period of several hours, constantly attaining a leap hei ght of 4 to 5 ft , at a high impassable fall of around 30 ft ; but the hei ght attai ned by the fish was much less than the recorded naximum at other passable falls because of the reduced attraction flow

Stuart (1964) suggests a ratio exists between the fall hei ght (the vertical di stance fromthe falls crest to the pl unge pool surface) and the pl unge pool depth which provides the best standing wave for leaping. He identifies this ratio as $1: 1.25$ (fall hei ght/pl unge pool depth). Aaserude (1984) st udi ed st andi ng waves and concl uded that the character of the standing wave is closel y rel ated to the j et shape which strikes the pl unge pool, and the depth of pl unge can be estinated as S. 5 (d), where dis defined as the dianeter of the circle that can be superimposed completel $y$ within the boundaries of the $j$ et cross-section at the pl unge pool surface. Stuart's ratio does not consider jet shape.

Froma research project the author participated in observing fish I eaping over wei rs at Johns Creek Fi sh Hatchery, near Shel ton, Wishi ngton (Aaser ude, 1984), it was concl uded that two conditions should be satisfied to provide optimuleaping conditions in pl unge pools:

1. depth of penetration of the falling water (dp) should be less than the depth in the pl unge pool (dpp), and
2. depth of the pl unge pool must be on the order of, or greater than, the length of the fish (LF) attempting to pass.

These tuo conditions assure the pl unge pool will be stable with sufficient depth so the fish's orientation and propulsive power will be uni mpaired. The rel ationships for anal yzing a pl unge pool are shown in Table 6.

Table 6. Rel ationships anong pl unge pool depth, depth of pl unge and fish length for opti mum and poor leaping conditions.

Turbul ent pool condition di sorients fish.

Standi ng wave reduced and noved downst ream from where the falling water strikes the bed of the pl unge pool.
2. dp < dpp
a. I-F > dpp
b. LF < dpp
where: $d p=d e p t h$ the falling water $p l$ unges beneath the pool surface, dpp = depth in the pl unge pool measured at the point of pl unge, and

LF = Iength of the fish attempting to pass.

## Landing Conditions

When fish leap at waterfalls, often the Ianding conditions near the crest are such that the fish may be suept back by high velocities, or unable to propel thensel ves in water depths less than their body depths,
where they are not totally subnerged. Stuart (1964) notes that when fish Ieap towards the crest of a waterfall, they are geared for imedi ate propul si on when they land. The slightest del ay in reaction would cause the fish to lose ground and be swept back over the waterfall. He al so observed fish Ianding near the crest, rel axing their swining effort imedi atel $y$ if they began to lose ground, and then were swept backwards. Even if fish are successfuly passing a gi ven uaterfall, improvenents of the landing conditions can reduce stress on the fish and further open the "window of passage".

If the vel ocity and depth of flow near the crest cannot be neasured for a range of streamflows, an anal ysis near the crest of a fall or chute can be made by locating the point of critical depth and measuring the channel cross section at that point. Critical depthin open channel flow is that depth for which the specific energy (sum of depth and vel ocity head) is a minimand the Froude number $\operatorname{Fr}=V /(g L)^{1 / 2}$, is equal to unity. Critical depthis al so "stream control," which determines a depth-di scharge relationship. If the fish exit bed slope ( $S_{e}$ ) is negative (increases in el evation in the direction of flow) critical depth will occur at the crest for allor or chute. If the exit slope is positive (decreases in el evation in the di rection of flow critical depth willoccur at the crest for a chute, but will occur sone di stance upstream of the crest for a fall. If critical depth does not occur at the crest, the following steps will locate the point where critical depth occurs:

1. neasure the nean depth of flow sone di stance upstream of the crest,
2. cal cul ate the equi val ent pool el evation from pool el evation $=$ bed el evation + neasured depth of flow + hydraulic depth/ Z, where: hydraulic depth $=$ cross sectional area di vided by the top width,
3. measure the pool el evation some di stance upstream of the crest where the water is qui et,
4. if the pool el evation (neasured) = pool el evation (cal cul ated) the critical depth occurs at the point where the depth of flow was neasured, and
5. if the pool el evation (neasured) > pool el evation (cal cul ated), nove farther upstream and return to step 1 .

This anal ysis is required because of the effect of the approach vel ocity. As Se increases from zero to sone positive val ue the approach vel ocity will increase and critical depth will occur further upstream If the fish exit slope is steep and thus flowing at supercritical flow, critical depth will not be reached and the Ianding condition should he anal yzed as a vel ocity chute.

It can be shown mathenatically (Henderson, 1966) that critical depth occurs in any channel shape when:

$$
\begin{equation*}
0^{2} / g=A^{3} / W \tag{9}
\end{equation*}
$$

where $Q=$ total stream di scharge incfs, $W=$ surface $w i d t h$ of the waternay in ft, $\mathbf{g}=$ accel eration of gravity in $f t / \mathrm{sec}^{2}$, and $A=f l o w$ area of the cross section. Si nce nost nat ural channels are of irregul ar shape and can be composed of several di stinct subsections, the sol ution of equation (9)
for rectangul ar and triangul ar sections will-allow computation of the di scharge as a function of the critical depth for any irregul ar channel shape. For rectangul ar shapes:

$$
\mathrm{Q}=\left(\mathrm{A}^{3} \mathrm{~g} / \mathrm{W}\right)^{0.5}
$$

but $\mathbf{A}=W\left(d_{C}\right)$ where $d_{C}=c r i t i c a l$ depth in $f t$, so substitution yiel ds:

$$
Q=(W)(g)^{0.5}\left(d_{c}\right)^{1.5},
$$

and using $\mathbf{g}=32.2 \mathrm{ft} / \mathrm{sec}^{2}$ yi el ds:

$$
\begin{equation*}
Q=5.7(W)\left(d_{C}\right)^{1.5} \tag{10}
\end{equation*}
$$

For triangul ar shapes the substitution is:

$$
A=W\left(d_{C}\right) / 2
$$

which yields the following equation for triangul ar shapes:

$$
Q=2 W\left(d_{c}\right)^{1.5}
$$

Rut substituting $W=d_{C} / S$ where $S=s l o p e o n e ~ s i d e ~ o f ~ t r i a n g l e i n$ percent yi el ds:

$$
\begin{equation*}
Q=\left[2(d c)^{2.5}\right] / S \tag{11}
\end{equation*}
$$

Once the di scharge has been sol ved as a function of the critical depth, substitution of a range of migation flows will give the critical depths, which can then be compared to the fish depth (df) to determine if the fish will be totally subnerged. Also, the nean vel ocities can be cal cul ated from

$$
\begin{equation*}
\mathrm{vc}=\mathbf{Q A} \tag{12}
\end{equation*}
$$

where $V_{C}=$ nean vel ocity at critical depth, $Q=$ stream di scharge, and $A=$ cross sectional flow area.

Optimuleaping conditions exist when the water vel ocity near the crest is less than or equal to the sustai ned swiming speed (VFS) for the species in question, and the depth of flowis greater than the fish depth.

At sustai ned speed, fish can function normally without fatigue (Hoar and Randal I, 1978), and therefore are able to swim whatever distance is requi red before locating a resting area. If the water vel ocity is greater than the sustai ned swing speed, the landing conditions should he anal yzed as a chute because the di stance the fish can swill decrease as the water vel ocity increases above the sustai ned speed.

The rel ationshi ps for anal yzing the I anding conditions at the crest of a fall or chute are shown in Table 7. An exanple cal culation will show how this anal ysis can be used.

Table 7. Rel ationships bet ween fish depth, critical depth, nean vel ocity and sustai ned swi ming speed for optimulanding condi tions.

Vel ocity, depth rel ationships Effect on fish

1. $d_{f}>d_{c} \quad$ Propulsive poner of fish will be
2. df $<d_{C}$
a. $V_{C}>$ VFS Landing conditions should be anal yzed as a chute
b. $\quad V_{C}<$ VFS

Optimum I andi ng conditions
Where: df = depth of fish,
$d_{c}=$ critical depth cal cul ated froma range of migration flous (equation 9) if $d_{c}$ occurs close enough to crest for fish to reach, or
$=$ depth near the crest where fish may land if the critical depth occurs too far upstream for the fish to reach,
$V_{C}=$ mean vel ocity at critical depth if critical depth occurs cl ose enough to crest for fish to reach, or
$=$ nean vel ocity near the crest where fish may land if the critical depth occurs too far upstreamfor the fish to reach, and

VFS = sustai ned swi ming speed for the species in question from Table 1 .

Example: Given the irregul ar channel shape in fig. 21, determine the di charge ( 0 ) in ifs as a function of the critical depth (dc) assuming critical depth occurs at the crest, and cal cult ate the critical depth that will occur at migration flows of 5, 20 and 50 cf s, and the corresponding $g$ mean vel ocities from equation 12. Using Table 7, determine the effects on an adult steel head trout with a maxi mum fish depth (af) of 0.5 ft .


Figure 21. I rregul ar crest shape used for I landing condition anal sis example e.

The channel shape in Fig. 21, can best be represented by the conbi nation of a rectangle (section 1) and a triangle (section 2). There ore:

$$
Q_{\text {total }}=Q_{1}+Q_{2}
$$

where: $\quad Q_{1}=5.7(W) d_{C} 1.5$, from equation (10), and $Q_{2}=\left[2\left(d_{C}\right)^{2.5}\right] / S$ from equation (11). Substituting, $W=5 \mathrm{ft}$ and $S=0.50$ yid el de:

$$
Q_{1}=28.5\left(d_{C}\right) 1.5 \text { and } Q=4\left(d_{C}\right)^{2.5} .
$$

Therefore, the di charge as a function of critical depth is:

$$
Q=28.5\left(d_{C}\right)^{1.5}+4\left(d_{C}\right)^{2.5} .
$$

Substituting $Q=5,20$ and 50 cfs , and sol ing for $d$, and $V_{C}$ gi res:

| $\mathbf{Q}(\mathrm{cfs})$ | $\mathrm{d}_{\mathrm{c}}(\mathrm{ft})$ | $\mathrm{V}_{\mathrm{c}}(\mathrm{fps})$ |
| :---: | :---: | :---: |
| $\mathbf{5}$ | 0.30 | 3.1 |
| 20 | 0.74 | 4.7 |
| 50 | 1.30 | 6.1 |

From Table 1 , the sustai ned swiming speed for steel head is, VFS $=4.6 \mathrm{fps}$. Usinq Table 7, the effects on fish are:

1. At 5 cfs; $d_{f}>d_{C}$ and
2. At $50 \mathrm{cfs} ; \mathrm{V}_{\mathrm{c}}>\mathrm{VFS}$.

The only di scharge whi ch provi des good Ianding conditions from Table 7 is 20 cfs . At the other tho flow rates, passage will not be blocked, but a hi gher passage success rate nay be obtai nable if these conditions were not present.

This example assumes the fish lands at critical depth, and therefore is not applicable if critical depth occurs some di stance upstream of the crest. In that case the fish would land in higher vel ocities and shal lower depths between critical depth and the depth at the falls crest.

In summary, for anal yzing I anding conditions near the falls crest, the following factors must be consi dered:

1. The depth of flow where the fish lands must be equal to or greater than the depth of the fish.
2. The vel ocity where the fish Iands should be within the range of the sustai ned swining speed for the speci es in question.
3. The vel ocity and depth should be anal yzed under a range of fish migration flows.

The nost obvi ous obstruction at fals is when the change in water surface el evation bet ween pools (14) exceeds the leaping hei ght (H) of the species in question. For Pacific sal non and steel head trout, the highest cal cul ated hei ght of leap fromlevel pool using equation (6) and $\theta \mathrm{L}=90^{\circ}$ is 10.9 ft (steel head). Ther $\begin{aligned} & \text { ore, } \\ & \text { falls where the change in water surface }\end{aligned}$ el evation is in excess of 11 ft can be considered for all practical purposes a total barrier to all species of Pacific sal non and steel head trout. Evans and Johnstone (1980) suggest for nat ural bedrock naterfalls that if the vertical drop is more than 6 feet, it should he considered to he a barrier for sal non and steel head wi thout further study.

Of ten, though, the actual distance the fish must leap is greater than the vertical drop between pools. Unless the water is falling vertically, sone horizontal component of the leap (XL) will be required for successful passage. If the horizontal di stance the fish must leap cannot he measured, and the geonetry of the falls is such that the water breaks of f the crest and is unobstructed until it strikes the pl unge pool, then this di stance can be cal cul ated. The cal culation requi res know edge of the vel ocity of the water and the angle of trajectory at the crest (Fig. 22). An example of where this anal ysis nould apply is at a cantilevered cul vert outlet. Using the equations for projectile notion, devel oped in the fish capability section, the horizontal distance the water travel sefore striking the Pl unge pool can be cal cul ated from

$$
\begin{equation*}
X P=V W_{C}\left[\cos \left(\theta W_{C}\right)\right] t \tag{13}
\end{equation*}
$$

Where $\mathrm{XP}=$ horizontal di stance fromthe crest to the point of the falling water, $W W=$ vel ocity of the water as it leaves the crest, $\theta W_{C}=$ angle at which the water leaves the crest at in rel ation to the horizontal, and $\mathbf{t}=$ tine. To use equation (13), neasurements of $\mathbf{W V}$ and $\theta W_{c}$ are required bef ore t can be cal cul ated from

$$
\begin{equation*}
\|=\left[v_{\cdot i}\left(\sin \partial i_{c}\right)\right] t \cdot(1 / 2) g t^{2} \tag{14}
\end{equation*}
$$



Fi gure 22. Leaping anal ysis paraneters.
where $H=$ change $i n$ vater surface el evation (measured), and $g=$ accel eration of gravity ( $32.2 \mathrm{ft} / \mathrm{sec}^{2}$ ). If the approach flowis froma negative ${ }_{\text {of }}$ nonsustaining sl ope (rises in the di rection of flow) then $\Delta W_{C} \leq 0$, and equation (14) can be sol ved as a function of $t$, or:

$$
\begin{align*}
& t=[2(H) / g]^{0.5} \\
& \text { and } X P=V W_{c}[2(H) / g]^{0.5} \tag{15}
\end{align*}
$$

If the approach flowis froma positive or sustaining slope (el evation decreases in the di rection of $f\left(\begin{array}{l}\text { ow }\end{array}\right.$ then $\theta W_{C}>0$, $t$ must be found by using the quadratic equation, and then substitute $t$ into equation(13) to sol ve for XP. Once XP has been determined, adding the di stance fromthe point where the falling water strikes the pl unge pool to the standing wave (the point $\mathbf{j}$ ust downstream of the falling water from which fish nost likely $I$ eap) gi ves $X$

This anal ysis shows that even if the hei ght the fish can leap (H) is greater than the change in water surface el evation (H), and Xis greater than XL, then a leaping fish will not reach the crest at the top of its leap. It will either fall short of the crest on its way down or reach the crest as it continues upstream on its descending parabolic path. These conditions are shown in Figure 23 for a steel head trout. If the water surface profile of a barrier is superimposed on the fish leaping curves (Figure 23), the possibilities for a successful leap at a given leaping angle can be anal yzed. The wide solidine shown is a falls barrier on Eldorado Creek in Idaho (Figure 24). The di stances $H$ and $X$ were neasured at the site. It can be seen from Fi gure 23 that a leaping angle of 60 degrees nould allow passage. 80 and 40 degrees fall short of the crest by about 6 ft .


Figure 23. Eldorado Creek waterfall superimposed on steelhead leaping curves.


Figure 24. Looking upstream at Eldorado Creek Waterfa11, Idaho.

One parameter that has not been discussed as yet is the leaping angle ( $\theta \mathrm{L}$ ). It is the author's opinion, from observations of coho salmon leaping, that the angle at which the fish leaves the standing wave depends on the location of the waterfall crest with respect to the standing wave. Stuart (1964) observed that fish aimed at sharp boundaries between light and shade when leaping. This sharp boundary can be found at waterfalls where the contrast at the boundary between water and background is clearly visible. This also coincides with the theory that leaping ceases abruptly at dusk and under heavily overcast conditions. To estimate the leaping
angle, I ooking again at Figure 23, for a water surface slope of $29^{\circ}$, the optimumleaping angle was $60^{\circ}$. Si nce the fishis sighting the crest from some horizontal distance of 12.3 ft and a vertical distance of 6.7 ft the angle is sone function of $X$ and $H$ For this example in Figure 23, sol ving for $H$ as a function of $X$ gi ves:
$H X=\tan \theta L=\tan 60^{\circ}=1.73$
where $H=$ change in water surface el evation, $X=$ horizontal distance from the point where the fish will leap (or standing wave) to the crest, and $\theta L$ $=I$ eaping angle. Hol ding $X$ constant and sol ving for $H$ gi ves:

$$
H=X(1.73)=12.3(1.73)=21.3 \mathrm{ft}
$$

Si nce the measured val ue of $H$ was 6.7 ft , this val ue is approximately 3 times larger than the measured $H$ This is because the fish does not leap on a straight line, its path is parabolic and therefore to reach the crest the opti mum l eaping angle, $\theta \mathrm{L}$, shoul $d$ be:

$$
\begin{equation*}
\theta L=\tan ^{-1}[3(H / X)] \tag{16}
\end{equation*}
$$

This is the leaping angle equation.
Table 8 describes the tuo conditions that must be anal yzed to determine whether or not a fallis a barrier, assuming the pl unge pool and I andi ng condi tions are not adverse.

Table 8. Conditions for anal yzing a fallassuming-pl unge pool requirenents and I andi ng conditions are satisfied.
Water Surface Drop and Leaping Form of Barrier
Capability Rel ationships

1. HHL
el evation barrier
2. HHL
a. $X>X L$ (Superi mpose water surf ace profile on fish leaping curves, Fi gures 7, 8 and 9)
b. $\quad X<X L$
passable
Where: $H$ = change in water surface el evation (measured),
$H$ = hei ght the fish can leap from Equation (6),
$X=$ horizontal di stance from the crest to the standing wave, and
XL = horizontal di stance of the fish's leap at the highest point of the leap from equation (7).

Anal ysi s of Chutes
In natural streans uniformflowis rare. However, the uniformflow condition is frequently assuned in the computation of flow in nat ural streans. The results obtai ned are approxi nate and general, but offer a rel atively si mple and satisfactory sol ution for anal yzing the vel ocities fish must swimagai nst. Laminar uniformflow rarely occurs in nat ural channel s, so turbulent uniformflow should be used for all vel ocity cal cul ations in chutes.

From the definition of chutes, the flow must be supercritical down the chute (Froude number is greater than unity). At the start of the chute the flow will pass through critical depth and then into a transition zone of varied flow for sone di stance bef ore uniform flowis established. If the
chute length is shorter than the transition length required to reach normal depth, unif ormflow cannot be attai ned. The length of the transition zone depends on the di scharge and on the physical conditions of the channel, such as entrance condition, shape, sl ope and roughness.

For hydraulic computations the nean vel ocity of a turbulent uniform flow in chutes can be expressed by Manni ngs equation

$$
\begin{equation*}
v=(1.49 / n)(R)^{0.67}\left(S_{p}\right)^{0.5} \tag{17}
\end{equation*}
$$

where $V=$ mean vel ocity of flowinfps, $n=$ empirical roughness coefficient, $R=$ hydraulic radius in ft, and $S p=$ passage slope (or bed slope). Outlet vel ocities in chutes computed by assuming uniformflow will give conservative estimates of vel ocity, because as the fish approach the transition zone the nean water vel ocity will be reduced. In cul verts, the uater surface profiles can be cal cul ated because of the unvarying cross section, constant bed slope and uniform roughness throughout. From equation (17) it can he seen that the nean vel ocity varies as the slope to the 0.5 power, hydraulic radi us to the 0.67 power and roughness to the $\mathbf{- 1 . 0}$ power. Si nce the mean vel ocity is highly dependent on $n$, it is important that the proper val ue of $n$ be used. Chow (1959), suggests the following val ues for Manning's $n$, shown in Table 9. A problem arises when one value of $n$ is sel ected, because $n$ changes as the depth of flow changes as well as the sl ope, di scharge and cross-sectional shape. This is shown in Appendix II. Three tests were run with identical bottom and side roughness, and $n$ i ncreased as the slope and depth of flow increased.

Table 9. Manni ng's $n$ val ue for corrugated netal pipe and bed rock (from Chow 1959).

Surface Material
Cul verts (C.MP.)

Manni nq' s n
0.024

Red Rock
smooth min- 0.025 nax- 0.040
jagged .min-0.035 max-0. 050

The hydraulic radi us is cal cul ated by di viding the flow area by the wetted perimeter. If the cross-section cannot be neasured, a nethod can be applied to estimate the hydraulic radi us that gives val ues with errors less than $5 \%$ Thi s met hod was suggested by Renard and Laursen (1975), but the author has expanded the method. It is used to estimate the hydraulic radi us for rectangul ar and symetrical triangul ar shaped channel s, or conbi nations of such basic geonetric shapes. For rectangul ar channel s where the average stream width di vided by the average depth is greater than 35, the hydraulic radius can be estinated by the average depth of flow If the average $\mathbf{w i d t h}$ di vided by the average depth is between 10 and 35 , the hydraulic radi us can be estinated by 0.9 tines the average depth. If the averaqe width di vided by the average depth is less than or equal to 10 , the hydraulic radi us can be estimated by the following equation

$$
\begin{equation*}
\mathbf{R}=\lambda[0.524 \log (\bar{w} / \mathrm{d})+0.35] \tag{18}
\end{equation*}
$$

where: $\mathrm{R}=$ hydraulic radius, $\mathrm{a}=$ average depth in a rectangular channel, and $w=$ average $w i d t h$ in rectangul ar shaped channel. For symetrical trianqul ar shaped channel s where the average stream width di vided by the maxi man depth in the center of the streamis greater than or equal to 7 , the hydraulic radius can be estinated by 0.5 tines the thal neg depth ( naxi mum dept h). If the average width di vi ded by the thal weg depth is
between 3 and 6, the hydraulic radi us can be estimated by 0.45 tines the maxi mum depth. If the average width di vided by the naxi mum depth is less than or equal to 3 , the hydraulic radi us can be estimated by

$$
\begin{equation*}
\mathbf{R}=d_{t}\left[0.36 \log \left(\bar{w} / d_{t}\right)+0.23\right] \tag{19}
\end{equation*}
$$

where: $d_{t}=d e p t h$ at the $t$ hal neg; and $w=$ average stream $w d^{\prime} h$ or the triangul ar channel section. These conditions are summarized in Table 10.

Table 10. Hydraulic radi us as a function of the width and depth for rectangul ar and triangul ar shaped channel s.

| Channel Shape | W) dth : Depth Ratio $\bar{w} / \mathrm{d}$ ( rectangle) <br> $\bar{w} / d_{t}$ (tri angle) | Hydraul ic Radi us (feet) |
| :---: | :---: | :---: |
| Rectangul ar | >35 | d(1.0) |
|  | $10<\bar{W} / d<35$ | . $\mathrm{J}(0.9)$ |
|  | $\triangleleft 0$ | $\mathrm{d}[0.524 \log (\bar{w} / \mathrm{d})+0.35]$ |
| Symmetri cal Tri angle | $\geq 7$ | $d_{t}(0.5)$ |
|  | $3<\bar{w} / d_{t}<6$ | $d_{t}(0.45)$ |
|  | $\leq 3$ | $d_{t}\left[0.36 \log \left(\bar{w} / d_{t}\right)+0.23\right]$ |

An example will show how this infornation can be used to estimate the mean flow vel ocity in a chute.

Example: Determine the vel ocity at the bottom of a chute the fish must face gi ven that the bed naterial is jagged rock, the channel shape is rectangul ar with an average widh of 20 ft , and average depth at the bottom of chute is 1 ft . The bed slope is 0.4.

For jagged rock, $\mathrm{n}=\mathbf{0 . 0 3 5}$ to 0.050 .
For a rectangul ar channel shape and $\bar{w} / \bar{d}=20, R=0.9$ ( $\bar{d}$ ), or $R=0.9(1)=0.9 \mathrm{ft}$.

Ther ef ore, assuming uni formflow (because of the steep slope and a short transition from critical depth near the crest), the vel ocity can be estimated using equation (17):

$$
v=(1.49 / n) R^{0.67} S^{0.5}
$$

usi $\mathrm{ng} \mathrm{n}=0.035$, yi el ds:

$$
\begin{aligned}
& v=(1.49 / 0.035)(0.9)^{0.67}(0.4)^{0.5} \\
& \underline{v}=25.1 \mathrm{fps}
\end{aligned}
$$

usi $\mathrm{ng} \mathrm{n}=0.050$, yi el ds:

$$
\begin{aligned}
& \mathbf{V}=(1.49 / 0.050)(0.9)^{0.67}(0.4)^{0.5} \\
& v=17.6 \mathrm{fps}
\end{aligned}
$$

Ther ef ore, depending on the roughness, the vel ocity at the bottom of the chute will vary between 17.6 and 25.1 fps .

The actual vel ocity the fish must swimagai nst can be reduced fromthe mean vel ocity if the water depth is great enough so the fish can swimnear the boundary I ayer at vel ocities less than the nean.


Figure 25. Fi sh swiming in reduced vel ocities near streambed.

The vel ocity variation with depth in conduits is logarithmic, and the vel ocity at 0.6 of the depth bel ow the water surface is very nearly equal to the nean vel ocity in a vertical section (Linsley and Franzini, 1979). The vel ocity reduction is nost pronounced nearer the boundary where the I ocal vel ocities may be irregul ar when vortices are being shed behi nd large roughness el ements. Daily and Harlenan (1973), suggest the following formal a for cal cuting the mean vel ocity in the case of a rough wall:

$$
\begin{equation*}
\bar{u} / u_{\star}=5.6 \log (y / k)+6.1 \tag{20}
\end{equation*}
$$

where: $\bar{u}=$ temporal mean vel ocity, $u_{\star}=$ shear vel ocity, $y=$ mean depth of flow at which is cal cul ated and $k=$ hei ght of dom nant bed material. The shear vel ocity ( $u_{\star}$ ) can be cal cul ated from (Henderson, 1966)

$$
u_{\star}=\left(g R S_{f}\right) 0.5
$$

where $\mathbf{g}=$ accel eration of gravity, $R=$ hydraulic-radius and $S_{f}=f r i c t i o n$ slope. Assuming uniformflow conditions exist, the friction slope is parallel to the bed slope as the resi stance to the flow is bal anced by the gravity forces.

An example of how the vel ocity in the boundary layer varies from the nean vel ocity of flow as depth increases al ong the centerline in a corrugated metal pi pe will be shown (Table 11).

Table 11. Fish swiming in a cul vert at vel ocities less than the nean vel ocity of flow

| Depth of flow <br> (d), ft | Mean Vel ocity at 0.6 (d), fps | Mean vel ocity at $y=0.3 \mathrm{ft}$, fps (halffish depth) | Vel ocity Reduction |
| :---: | :---: | :---: | :---: |
| 1 | 8. 2 | 7. 5 | 9\% |
| 2 | 13.3 | 10.0 | 2 5\% |
| 3 | 16.9 | 11.6 | 31\% |
| 4 | 19.5 | 12.6 | 35\% |
| 5 | 20.6 | 12.8 | 38\% |

Assumptions: 1. Cul vert di aneter (D) = 6 feet.
2. Hei ght of corrugations (k) = 2 inches (Standard di nensi on, Aneri can I ron and Steel Inst., 1971).
3. Uniform flow occurs at a cul vert bed slope of $5 \%$
4. Fi sh depth ( df ) $=0.6$ feet, theref ore to cal cul ate the nean vel ocity the fish will sui $m$ agai nst use $y=\left(d_{f}\right) / 2$ $=0.3$ feet, usi ng Eq. (20).

Thi s table shows that as the depth of water increases the vel ocity the fish must swi $m$ agai nst near the cul vert bot tom (compared to the mean vel ocity) decreases. For smaller fish the gain will be nore si gnificant, but local eddi es may di sorient them Equation (20) can be rearranged in terns of the minimm nean vel ocity the fish could swimagainst at the bed of a chute as:

$$
\begin{equation*}
\bar{u}_{f}=(5.6 \log (\mathrm{df} / 2) / k+6.1)\left(g R S_{f}\right)^{1 / 2} \tag{21}
\end{equation*}
$$

where: $\quad \bar{u}_{f}=m i n i m m$ mean vel ocity the $f i s h$ coul $d$ swi $m$ agai nst near the bed of a chute, off = depth of fish, $g=$ accel eration of gravity, $R=$ hydraulic radius and $\mathrm{Sf}=\mathrm{friction}$ slope or bed slope for uniformflow conditions.

Vel ocities in nat ural rock chutes are sel dom simplo anal yze, because of the wide variations in channel shape and bed roughness. When flow occurs on a steep rock chute, large anounts of air may be carried bel ow the water surface in the highly turbulent flow This entrai ned air reduces the density of the fluid, resulting in an increase in vol une called bul king. Although not strictly applicable, the Manning equation is of ten used to design channels on steep slopes and the cross-sections thus determined are increased by an arbitrary bul king allowance to provide for ai $r$ entrai nnent. Hal (1943) has presented empi rical data for snooth concrete chutes whi ch permit use of a nodified val ue of $n$ in the Manning equation to allow for the effect of air entrainnent.

If the channel shape can be surveyed and a cross section determined, appl ying the continuity equation:

$$
\begin{equation*}
Q=A V \tag{22}
\end{equation*}
$$

can yiel d estimates of the average water vel ocity-where: $\mathbf{Q}=\mathbf{f l}$ ow rate in the neasured cross section, $A=$ cross- sectional area of channel, and $V=$ mean vel ocity of flow This nethod was used at Hell's Gate on the Fraser River in British Col umbia to estimate the vel ocities sockeye sal non were facing as they attempted to negotiate the obstruction. The flow patterns at Hell's Gate could be described as a constantly changing state of t urbulence, where the water surges, boils and entraps huge vol unes of air. Because of these flow patterns and the extrenel y rough channel s, Jackson (1950) noted that the average vel ocities computed this way are inaccurate. Using equation (22), if the cross-section is measured at some point in the chute, a staqe-di scharge rel ationshi p can be devel oped so as the di scharge increases or decreases, the nean flowthrough vel ocity can be estimated.

When anal yzing a chute, the depth of flow should be greater than the depth of the fish, or the fish will not be able to nake full use of its propul si ve power. In a study conducted at Johns Creek Fi sh Hatchery near Shel ton, Whshi ngton by the aut hor (Appendi $x$ II), chum and coho sal non were observed swiming up a vel ocity chute. At a depthof 0.13 ft , a $0 \%$ passage success rate was recorded for both species. When the depth was increased to 0.66 ft , a passage success rate of $100 \%$ was recorded for chumsal non at a water vel ocity only slightly less than the first test. The naxi mum depth of chum sal non was 0.65 ft . The results of these two tests show the importance of the depth of flow for the fish to achi eve successful passage. Table 12 descri bes the tuo conditions that must be anal yzed to determine whether or not a chute is a barrier assuming the pl unge pool requi renents, I anding conditions and depth of flow are sufficient.

Table 12. Conditions for anal yzing a chute assuming pl unge pool requl rements, I anding conditions and depth of flow are sufficient.

Water vel ocity, fish speed,
sl ope Iength and fish Form of Barrier performance rel ationships

1. $\mathbf{W W}>\mathbf{V F}$
vel ocity barrier
2. $\mathbf{W W}<\mathbf{V F}$
$\begin{array}{lc}\text { a. LS > LFS } & \text { di stance/ vel ocity barrier } \\ \text { b. LS } ~ L F S ~ & \text { passable }\end{array}$
where: $\quad V W=$ vel ocity of nater (neasured or cal cul ated),
VF = fish speed fromequation(2),
LS = lenqth of slope ( measured), and
LFS= di stance the fish can swim from Fi gures 10,11 or 12.

## Cascade Barriers

A cascade was described in the introduction as a reach of stream with I arge boul ders or $j$ utting rocks that obstruct the flow This obstruction usually results in a narrower stream width, sharp changes in flow boundaries, and consequently high vel ocities and viol ent conditions. If the bed sl ope over the reach is steep enough to accel erate the flow white nater and turbul ence will consume nost of the channel and offer little or no resting areas for the migrating fish. If the reach is not too steep, the obstructions in the stream can create good resting areas as the fish work thei $r$ way through the cascade.

Cascades are usually located in areas with steep topography (canyons) and are very difficult to survey because of the high vel ocities, deep pools and turbulence. Cascades usually persist as either boul der cascades
or turbul ent cascades. Boul der cascades consist of boul ders in the stream that are large enough to provide resting areas for the fish in their wakes. To anal yze a boul der cascade, application of the four following steps can be hel pful:

1. neasure the total drop in water surface over the entire reach,
2. determine the number of paths and/ or steps per path the fish must pass within the reach,
3. estimate the nater surface drop and/ or vel ocity the fish must negotiate to successfully pass each step in each path, and
4. I ocate resting areas between each step (on each path) where the fish may rest before attempting to pass the next step.

Of ten the flow between obstructions (boul ders) can act like flow down a short chute. Douna (1943) noted that for short chutes, the vel ocity nay be determined by:

$$
\begin{equation*}
V_{s c}=(2 g H)^{0.5} \tag{23}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{SC}}=$ vel ocity down a short chute, $\mathrm{g}=$ accel eration of gravity, and $H=$ total vertical drop between two pool s. Using this anal ysis, if any step within the reach has vel ocities or el evation drops in excess of the fish's capabilities, or resting areas are not present between each step, the cascade would be a barrier to fish.

Turbul ent cascades present the fish with a variety of difficulties, but usually the excessi ve vel ocities and excessi ve turbul ence is enough to obstruct passage. These two conditions were studi ed extensively at the Hell's Gate obstruction (Jackson, 1950). Vel ocities nere neasured by nethods described earlier, but the turbulence coul d not be neasured in any manner that could be rel ated to passage success. Turbul ence in cascades
serves to deflect a swiming fish fromits course, causing it to expend energy to resi st up-hellings, eddies, entrai ned air and vortices. Mbst of the fish's energy is utilized si mply to nai ntain position and di rection at the foot of a high vel ocity obstacle (Jackson, 1950).

To anal yze a turbul ent cascade, application of the three following steps can be hel pf ul :

1. time floats through the cascade to get an approxi nate surface vel ocity (floats may be del ayed in eddi es);
2. observe possible resting areas and zones of reduced turbul ence and vel ocity near the banks and behi nd obstacles; and
3. I ocate points of extrene upwellings and surges in the cascade whi ch might deflect a fish fromits swiming path.

If the surface vel ocities are excessi ve, there may be a path for the fish to pass al ong the stream bank, avay from the excessi ve vel ocities and upuel lings in the nain channel..

In summary, this section has presented a detailed anal ysis of four components which affect fish passage at waterfalls and cul verts:

1. pl unge pool s;
2. I anding conditions near uaterfall crest;
3. falls; and
4. chutes.

A di scussi on of the paraneters invol ved in each component, followed by a table summarizing the important conditions to anal yze have been presented. Also, a di scussion of hydraulic/fish capabilities in cascades is introduced with steps to follow which will aidin determing the effect on fish passage success.

## SI TE ANALYSI S AND SOLUTI ONS

The generation of sol utions to fish passage problens at barriers is dependent on the parts of the anal ysis perforned. If the barrier is total, the anal ysis will reveal the paraneters which exceed fish capabilities. The geonetric conditions can be al tered to reduce the excessi ve paraneters and assist fish passage. Evans and Johnston (1980), suggest the following corrections for nat ural bedrock waterfal l barriers:

1. Dam the pl unge pool bel ow the falls.
2. Bl ast a pl unge pool bel ow the falls.
3. Bl asts series of pools through the falls.
4. Provide a fish ladder over the falls.

According to Evans and Johnston (1980), the pl unge pool shoul d be rai sed so the depthis 1.5 to 2 tines deeper than the barrier is high. They al so suggest that blasting a series of pools through the falls is only practical for bedrock falls under 10 feet in hei ght.

These correction nethods have been empl oyed successfully by the U.S. Forest Service and State Agencies in Whshi ngton (Schoettler², 1953), Oregon and $A$ aska. To build vertical-sl ot fishways at renote barrier sites on British Col unbia rivers, engi neers working for the Sal nonid Enhancenent Program (SEP) have perfected blasting techni ques that al low nat ural rock to be used as the floor and sides of the fishway (Sal nonid, 1983). This
i Schoettler, R.J., I mprovenent of M nor Falls, Federal Project No. 852-WSI-10, Dept. of Fi sheri es, State of Whshi ngton, 1953.
innovation, al ong with the use of precast concrete panels flown in by hel icopter, has resulted in substantial cost savings. Kerr, et al. | 1980) suggest techni ques to renove or bypass obstructions:

1. A steel bar can be used to hand pry and roll rocks for sel ective pl acenent.
2. Larqe rocks and boulders nay be renoved and/ or rel ocated utilizing slings with block and tackle.
3. Large boul ders may be reduced to a size that can he readily renoved, using a portable gas-powered rock drill or with expl osi ves.

Renoval of an obstruction during egg incubation could cause serious nortality by silting the downstream spawning bed.

Of the few project reports published, no infornation was found on the pre-construction or anal ysi $s$ phases except the nention of the hei ght of the barri er.

The objective of this section is to eval uate "paraneter specific" sol utions with varying degrees of construction difficulty. For example, if the hei ght of a harrier is determined to not be excessi ve, but the fish cannot reach the crest, then one of three things (or a conbi nation) may he happeni ng:

1. The pl unge pool hydraulic characteristics are such that the propul si ve power and the orientation of the fish's leap are affected (Table 6); and/ or
2. The horizontal di stance (or range) which a fish leaps is excessive compared to the actual horizontal di stance the fish must leap to reach the crest; and/ or
3. Fl ow over the waterfall is di agonal, or concentrated on one side, thus providing the fish with a false di rectional stimus.

Anal yzi ng these components will suggest the excessi ve parameter(s), that must be reduced. Without this anal ysis the hei ght of the falls nay have been reduced when it was not excessive to fish passing in the first place. In-depth anal ysis of this type will of ten reduce site construction' costs and assure correction of the real passage problens.

The sol utions to waterfall and cul vert barrier physical problens are di rectly dependent on the anal ysis. If the vel ocity in a rock chute or cul vert is excessive (Table 12), then the vel ocity and/ or the length must be reduced. Assuming that Manni ngs equation (17) is exact, the components that would reduce the vel ocity in descending order of effectiveness are:

1. increase the roughness coefficient(n);
2. decrease the hydraulic radius; or
3. decrease the slope.

Adding baffles to cul verts essentially increases the roughness and decreases the hydraulic radius. If the depth of flow at the crest of a falls is shal low, then to increase the depth requires one of three hydraulic changes:

1. i ncrease the di scharge,
2. decrease the crest width, or
3. decrease the vel ocity.

These sol utions can be incorporated at the crest of a waterfall barrier by using instream control structures such as gabi on baskets, rock weirs and snall retaining walls as flow deflectors to concentrate the flow in order to create an adverse slope, one nould need to bl ast a pool above
the crest. Each structure placed instream must be carefully anal yzed hydraulically to assure proper functioning as the forces in the stream channel change with di scharge, ice and debris.

To show how this anal ysis/ sol ution approach to barriers can be used, two sites were chosen in Western Washi ngton and anal yzed for the di scharge recorded during the site visits. It is important to note that these examples address changes in paraneters whi ch were determined to be excessi ve fromthe anal ysis. When these parameters are changed, the anal ysis must be repeated, because the hydraulics of the entire barrier system nay have changed.

## Red Cabin Creek - Anal ysi s

Red Cabin Creek is a snall tributary that flows into the Skagit River near Lyman, Kashi ngton. The barrier on the creek is a cul vert located in the SE I/4 of Section 3, Township 35 North and Range 6 East. The cul vert runs under neath Camp 17 Road about 3 miles from Hamilton, Whshington. The creek is used by chi nook and pink sal non for spawning and contai ns good coho spawning and rearing habitat. The culvert barrier is 35 river miles from sal twater. The outlet of the cul vert is shown in Figure 26. Note the 2 ft wide wooden scour apron.

Cul vert Description: Starting at the water inlet, the circular cul vert is concrete lined with sone patches of corrugated netal on the bottom This continues until about the last 30 ft which is steel pipe. There is a debris jam about 2 feet high in the middle of the cul vert whi ch shoul d be renoved.

```
    Culvert Dimensions: Diameter = 6.0 ft
    Length = 150 ft
    Slope = 4.4%
```

Hydraulic Analysis: Velocities in the culvert must be determined so that the distance the fish can swim can be compared to the culvert length.


Figure 26. Looking upstream at Red Cabin Creek culvert outlet.

Using equation (17)

$$
V=(1.49 / n) R \cup .67 \$ 0.5
$$

where $V=$ average vel ocity of flowinfps, $n=$ roughness coefficient ( 0.012 for snooth steel surface, Chow 1959), $S=$ bed slope (measured at $4.4^{\%}$ ) (for assuned normal flow depth), and $R=$ area of flow wetted perimeter in ft. For circul ar cul verts the flow area can be cal cul ated by:

$$
A_{f}=(T / 180) \cos ^{-1}[(r-d) / r] r^{2}-\left[r^{2}-(r-d)^{2}\right]^{0.5}(r-d)
$$

where $A_{f}=$ area of $f l o w, r=$ radi us of cul vert, and $d=d e p t h$ of flow (or uniform depth). At the cul vert outlet, the flow can he assuned to be uniform and this depth was neasured at 0.55 ft on Decenber 8, 1983.

The wetted perineter of the flow area can be cal cul at ed by:

$$
Y p=(2 \pi / 180) \cos ^{-1}[(r-d) / r] r
$$

where $W_{p}=$ the wetted perimeter, $r=$ radi us of cul vert, and $d=$ depth of flow Sol ving for $A_{f}$ and $W_{p}$ yiel ds:

$$
A_{f}=1.29 \mathrm{ft}^{2} \text { and } t_{p}=3.69 \mathrm{ft}
$$

Substituting these into equation (17) yi el ds:

$$
\begin{aligned}
& v=(1.49 / .012) \times\left((1.29 / 3.69)^{0.67}(.044) 0.5\right. \\
& v=12.9 \mathrm{fps}
\end{aligned}
$$

Multiplying this vellocity by the flow area, equation (22) yi el ds a discharge of:

$$
0=V A_{f}=(12.9)(1.29)=16.6 \mathrm{cfs}(\text { on } 12 / 8 / 83)
$$

The di stance the fish can swimis a function of the fish condition, water vel ocity and depth of flow For average sized adult chi nook, coho and pink sal non, a depth of 0.55 ft is probably a minm and will theref ore not reduce the swiming capabilities. Since i?ed Cabin Oreek is a short tributary, with the barrier located near the spawning grounds, a coeffi-
cient of fish condition (Cfc) of 0.75 will be used (description is given in fish capability section). Using Figures 11 and 12, a water vel ocity of 12.9 fps , and $\mathrm{C}_{\mathrm{f}} \mathrm{C}=0.75$, yiel ds the $\mathrm{fol} \|$ owing di stances the fi sh can swim

| Specie | Maxi mum Swi ming Distance |
| :--- | ---: |
|  | 16 ft |
| Coho | 16 ft |
| Pink | I mpassable |

Because the cul vert is 150 ft long, the fish will not be able to negotiate the cul vert swining agai nst the nean vel ocity. Al so, the shallow depth forces the fish to swimagai nst the nean flow vel ocity.

The measured outfall hei ght at the end of the cul vert was 2.3 ft , but because of the high exït vel ocity, there was some horizontal component to the falling jet. This di stance can be cal cul ated fromequation (13): $X P=V r_{c}^{\prime}\left[\cos \left(\theta H_{c}\right)\right] t$,
where + can he determined fromthe equation (14):
$\mu=\left[V \omega_{C}\left(\sin \theta N_{C}\right)\right] t \cdot(1 / 2) g t^{2}$,
where $H=2.3 \mathrm{ft}\left(\right.$ neasured), $\mathbf{W V}=12.9 \mathrm{fps}$, and $\theta \mathrm{W}_{\mathrm{c}}=2.5^{\circ}$.
Substituting in these val ues yi el ds:

$$
2.3=0.56(t)+16.1\left(t^{2}\right)
$$

and sol ving for $\mathbf{t}$ yi el ds:
$t=0.36$ seconds.
Substituting this into equation (13) gi ves:
$X P=\left(12.9 \cos 2.5^{\circ}\right) 0.36=4.6 \mathrm{ft}$.
Because of the uooden scour apron, the di stance to the standing uave could not he observed. Therefore, this distance, XSW (Fig. 22) will be assuned equal to 1 ft . with the apron renoved. This gives a $X$ val ue of:

$$
x=X P+X S t=4.6+1.0=5.6 f t
$$

Now $X$ and ! $\|$ can be sustituted intc the leaping angle equation (16):
$\theta L=\tan ^{-1} 3(H / X)$,
where $H=2.3 \mathrm{ft}$ ( H easured), and $X=5.6 \mathrm{ft}$ (cal cul ated). Theref ore:
$\theta L=\tan ^{-1} 3(2.3 / 5.6)=51^{\circ}$
Superimposing $H$ and $X$ on Fi gures 8 and $a$ shows coho and chi nook will land right at the crest, and pink sal non about 1 ft short of the crest, at a I eaping anale of 60 degrees (dotted Iines Figures 27 and 28). This angle corresponds well with the calculated leaping angle of $51^{\circ}$. Because of the high vel ocities at the cul vert outlet, the fish will not be able to land successfully and swimthrough. Therefore, the outfall drop is considered a horizontal distance (or range) barrier with adverse Ianding conditions.

This anal ysis has shown that at a di scharge of 16.6 cfs , Red Cabin Creek cul vert is a vel ocity - lenğth barrier and a leaping range harrier. Classification for this harrier is shown in Figure 29.
f.ed Cabi n Creek - Sol utions

To negotiate the cul vert length of 150 ft , the vel ocities nould need to be less than or equal to 3.4 fps for chinook and coho, and 2.6 fps for pink sal non. In the corrugated metal pipe section with increased roughness coefficient, the vel ocity would only be reduced to 6.4 fps. Dane (1378) recommends for cul verts greater than 80 ft in lenath, the average vel ocity should not exceed 2.9 fps for adult sal non, and that the cul vert slope should not exceed $0.5^{x}$, unl ess appropriate compensation is made by the addition of baffles within the culvert. The design on culvert hafflescar he found in McKinley and Webb (1956), Engel (1974) and Wtts (1974). The addition of baffes essentially increases the val ue of the roughness


Figure 27. Red Cabin Creek culvert outlet superimposed on chinook and coho salmon leaping curves.


Figure 28. Red Cabin Creek culvert outlet superimposed on pink salmon leaping curves.

SITE: Red Cabin Creek Culvert DATE: 12/8/84 LOCATION: SE $1 / 4$ of Section 3, T35N, R6E


CLASS: Compound (chute/fall)
TYPE: IIC 1
DEGREE OF DIFFICULTY: 4
MAGNITUDE: H $=2.3 \mathrm{ft} \quad X=5.6 \mathrm{ft}$

$$
V W=12.9 \mathrm{fps} L S=150 \mathrm{ft}
$$

DISCHARGE: $Q=16.6 \mathrm{cfs}$

COMMENTS: Wooden scour apron deflects flow at culvert outlet. Debris jam in middle of culvert.

Fi gure 20. Classification of Red Cabin Creel: cul vert.
coefficient, therefore decreasing the vel ocity and increasing the depth of flow creating a pool and wei fishway at lower flows. This could be accomplished simply by acing roughness el enents on the cul vert bot tom but would not provide resting places as baffles do. Si nce the sl ope cannot be changed, the parameters that could be variedto decrease the vel ocity to 2.6 or 3.4 fps in equation (17) is the roughness coefficient, assuming Manni ng' s equation is exact, and the hydraulic radi us. To achi eve these vel ocities, the roughness coefficient should equal :

| Water Vel ocity | $n$ (roughness coefficient |
| :---: | :---: |
| 2.6 fps | 0.059 |
| 3.4 fps | 0.045 |

In Chow (1959) these roughnesscoefficients correspondto a natural steam channel with cobbles or I arge boul ders. The actual size of the roughness el enents could best be deternined by a nodel study so that vel ocity neasurenents could be nade over a range of di scharges and roughness el enent hei ghts and arranqenents.

At the cul vert outlet, because the vel ocity is excessive, the fish could leap into the cul vert and then be swept back. Theref ore assume here that the vel ocity in the culvert is reduced in some manner to a val ue suggested earlier for passage to be achi eved. An average of 2.6 and 3.4 $\mathrm{f} p \mathrm{~s}$, will he used of 3.0 fps . From equation (13) this reduces XP to 1.1 ft , and X to 2.1 ft , addi ng 1 ft for the di stance to the standi ng wave. Cal cul ating the leaping angle for the new outlet geonetry gives:

$$
O L=\tan -I 3(2.3 / 2.1)=73^{\circ}
$$

Superimposing the outfal l geonetry again on Figures 8 and 9 shows that coho, chi nook and pink sal non can successfuly enter the cul vert at a I eaping angle of about $60^{\circ}$, shown as dotted Iines in Figures 30 and 31 .

Again, this angleisclose to the cal culated leaping angleof $73^{\circ}$. Therefore, decreasing the vel ocity in the culvert to 3 fps will allow the fish to successfully swimthe cul vert length of 150 ft and reduce the horizontal leapina distance. Table 13 is a summary of the problens and suggested sol utions for Red Cabin Creek cul vert.

Table 13. Red Cabin Creek problens and sol utions.

Probl ens
Sol utions

Woden scour apron prevents fish fromentering cul vert.

Horizont al leaping di stance is excessi ve, caused by high vel ocities at crest of 12.9 fps .

Vel ocity in the cul vert is excessi ve for a cul vert lenath of 150 ft .

Renove apron.

Decreasing vel ocity to 3 fps at the crest would reduce the horizont al leaping di stance and al low successf ul passage.

Add baffles of sone type of roughness el ements to decrease the vel ocity. Check cul vert capacity to pass flood flows.

Renove debris

Debris j amin middle of cul vert prevents fish passage.

## Chuckanut Creek Witerfal I - Anal ysis

Chuckanut Creek is Iocated just south of Bellingham Whshi ngton; it flows al ong the Od Sam sh Hignay and di scharges into Chuckanut Bay. The barrier in Question, figure 32, is located at river mile 1.8, in the midde of the western $1 / 2$ of Section 17, Tounship 37 Noth, Range 3 East. The creek. be the barrier is used by chum Sal nor in the lower part bel ow the harrier and coho and steel head spamin the creek above ire barrier.


Figure 30. Red Cabin Creek "revised" culvert outlet superimposed on chinook and coho salnion leaping curves.


Figure 31. Red Cabin Creek "Revised" culvert outlet superimposed on pink salmon leaping curves.


Figure 32. Looking upstream at Chuckanut Creek waterfall.


Figure 33. Plan view of obstructing rock near Chuckanut Creek waterfall crest.


Fi gure 34. Pl an view sketch of Chuckanut Creek naterfall.

Whterfall Description: In the upstream section the harrier begins with a short, narrow rock chute (triangular Cross section) which terminates in a 2 to $\mathbf{3}$ it drop. At the drop there is $\mathbf{3}$ rock/ sandst one overhang whi ch say obstruct passage to the upper chute of the barrier, Fi gure 33. The nain openi nq for passage appears to present a very shallow depths near the crest. This waterfall does not appear to he an el evation or vel ocity barrier, but because of the rock overhang it may present orientation probl ens. Steel head have been observed by Dept. of Fi sheries personnel to successfully pass the barrier, hut have al so been observed falling back after landing near the crest.

Hydraulic Anal ysis: To anal yze the hydraulics at Chuckanut Falls, an engi neering survey was conducted on $12 / 8 / 83$ to determine the chute cross sections and significant topographic points throughout the barrier site. A survey base line was established (Fi gure 34) and neasurements of channel cross-sections taken. Using station $1+07$ as a representative cross-section (Figure 35) for the chute, the vel ocities can be cal cul ated using equation (17) with the following val ues: bed slope (assune uniform flow) = 7.7(neasured), flow area (neasured from Figure 35) $=1.5 \mathrm{ft}^{2}$, wetted paraneter (from Figure 35 ) $=3.9 \mathrm{ft}$, and roughness coefficient (jaqqed rock 0.035 to 0.050 , Table 9). Substituting these val ues into equation (17) yields for the average vel ocity at station $1+07$ :

$$
\begin{aligned}
& \forall=(1.49 / 0.035)(1.5 / 3.9)^{0.67}(0.077)^{0.5}=\underline{6.2 \mathrm{fps},} \text { and } \\
& \forall=(1 / 49 / 0.050)(1.5 / 3.0)^{0.67}(0.077)^{0.5}=\underline{4.4 \mathrm{fps}} .
\end{aligned}
$$

Multiplying the average vel ocity by the flow area, equation (22) yi el ds a di scharge of:



Fiqure 35. Cross sectional areas of stations $1+00$ and $1+07$ at Chuckanut Creek waterfall looking upstream.

$$
\begin{aligned}
& Q(n=0.035)=V A=6.2(1.5)=\underline{9.3 \mathrm{cfs}} \text { and } \\
& Q(n=0.050)=V A=4.4(1.5)=\underline{6.6 \mathrm{cfs}} .
\end{aligned}
$$

Theref ore at stat $i$ on $1+C 7$, the average vel ocity the fish must face assuming a di scharge of 8.0 cfs is 5.3 fps . A similar anal ysis was applied to station $1+\infty$ (Figure 35, the crest), and an average vel ocity of 3.1 fps was cal cul at ed. The vel ocity decreases near the crest because of the increased flow area fromstation 1+07 to l+OO.

The barrier is located only $\mathbf{1 . 8}$ river miles fromthe salt water, so a coefficient of fish condition, Cfc, of 1.0 will be used. The distance the fish can swimor the average vel ocity cal culated ( 5.3 fps ) is given by Fi gures 10, 11 and 12 as:

| Speci e | Maxi mum Swi mming Distance |
| :--- | :---: |
| Steel head | 105 ft |
| Coho | 80 ft |
| Chum | 48 ft |

Si nce the chute is only 12 ft in length, if the fish can get into the chute they will easily pass the barrier.

The upper chute terminates in an overfall where the water breaks off the crest (which is angled to the flow) and strikes the pl unge pool. The change in water surface el evation from the crest to the pl unge pool was neasured at 2.7 ft . Because of the overhanging rock on the right side of the fall (left looking upstreamin Figure 32) the fish are forcer to leap at the right side (I ooking upstrean), where the water breaks of $f$ the crest and flows down a short chute ( 7.5 ft lona) at a measured depth of 0.1 ft . Because of the shallow depthit is not possible for the fish to swimup this chute, and theref ore they must leap to pass.

The di stance $X$ was neasured to be 8 ft . Using equation (16), and the neasured $H$ and $X$ val ues of 2.7 ft and 8.0 ft respectively gi ves a leaping angle of :
$\theta L=\tan ^{-1} 3(H / X)=45^{\circ}$
Superimposing $H$ and $X$ on the fish leaping curves (Figures 7, 8, 9) shows the following:

1. Steelhead and coho can successfully pass at leaping angles of 60 and 40 degrees (Fi gures 36 and 37).
2. Chumsal mon will fall short of the crest by about 4 ft at leaping angles of 60 and 40 degrees (Figure 38).

The cal cul ated leaping angle of $45^{\circ}$ will extend to the point of naximum I eaping di stance for this falls geonetry. The fish that successfully leap will probably land in very shallow nater and higher vel ocities because of di sorientation caused by the over hanging rock.

The pl unge pool depth was neasured at 5.5 ft , and therefore provides a good Ieaping situation. Under the present conditions, Chuckanut Creek falls appears to be an el evation and orientation barrier at low flows (8 cfs) to chum sal non, but not to steel head and coho, except for the overhanging rock obstructing the path to the upper chute. Classification of this barrier is shown in Figure 39.

## Chuckanut Creek - Sol utions

A very good low flow channel is present above the falls, upstream from the falls crest. Referring to Figure 33 , if the overhanging rock was renoved, the fish would have a "strai ght-shot" into the upper chute. Al so, they nould be attracted to leap at the area of hi ghest flow noment um because of the deep channel on the left side (looking upstrean). This would
al so allow the fish to get further upstream before they attempt their leap, and decrease the horizontal I eaping distance (X). Even at high flow the maj ority of the flow would he concentrated in the deeper low flow channel.


Figure 36 . Chuckanut Creek fall superimposed on steelhead leaping curves.


Figure 37. Chuckanut Creek fall superimposed on coho salmon leaping curves.


Figure 38. Chuckanut Creek fall superimposed on chum salmon leaping curves.

SITE: Chuckanut Creek Waterfall DATE: 12/8/84 LOCATION: Middle of the Western 1/2 of Section 17, T37N, R3E


## CLASS: Single Fall

TYPE: III 1
DEGREE OF DIFFICULTY: 2
MAGNITUDE: $\quad \mathrm{H}=2.7 \mathrm{ft}$
$X=8.0 \mathrm{ft}$

DISCHARGE: Q = 8 cfs

COMMENTS: Rock overhang at crest may obstruct orientation for leaping.

Fi gure 39. $\mathbf{~ C a s s i f i c a t i o n ~ o f ~ C h u c k a n u t ~ C r e e k ~ : i a n t e r f a ̂ l l . ~}$

The ouidelines for anal yzing a waterfall or culvert barrier inthis report are rel atively simole. Vith the expertise of a fisheries biol ogist and a hydraulic engineer these guidelines can be used effectively to resol ve the dilemmas of fish passage problems at barriers. The following is a list of significant concl usi ons devel oped:

1. Unstable pl unge pools di sorient and reduce the fish's leap trajectory and hei ght respectivel $y$.
2. Vel ocities and depths can be estimated for any irregul ar shaped falls crest as function of the discharge at critical depth from

$$
0^{2} / g=A^{3} / W
$$

where $\cap=$ stream di scharge, $a=$ accel eration of gravity, $A=$ cross sectional flow area and $W=$ top stream width.
3. Whter surface profiles at barriers can be superimoosed on fish leaping curves to anal yze passage success. The optimuleaping angle can be estimated by:

$$
\theta L=\tan ^{-1} 3(H / X)
$$

where $H=$ the difference in water surface el evations, and $X=$ horizontal distance from the standing wave to the crest of the falls or chute.
4. For rectangular and trianaular shaped channels the hydraulic radius can be estimated as a function of the average width and depth with errors I ess than $5_{n}^{\%}$; this allous the mean vel ocity to be cal cul ated.
j. For depths greater than ? feet in corrugated netal pipe culverts, fish can swimin reduced vel ocities near the boundary where the vel ocitv opposing the fish is less than the mean vel ocity by as mach as 3 r.
6. Stage- di scharge rel ationshi ps, when compared wit'! migration season flows, will define hydraulic conditions at the harriers which the fish must negotiate.

## SUGGESTIONS FOR FURTHER STUDY

Concepts for anal yzing harriers to upstreamfish migration have been presented in this paper. As each section was written, nore and nore ideas about methods for anal yzing barriers were unveiled. The urge to go back and incl ude these new ideas was event ually offset by the necessity to compl ete the study. Further study of the following areas will increase the accuracy of anal yzing and finding sol utions to fish passage problens.

1. Pl unge pool: guidelines should be devel oped to accurately determine the pl unge pool depth for the gi ven barrier geonetry and hydraulics which create opti mum leaping conditions.
2. Fi sh speeds in an air-vater mixture: there shoul d be sone reduction in the fish's burst speed in a air-nater mixure because of the reduced water density. Cal cul ations need to be nade using fish loconotion equations (Blake, 1984) to determine the reduction of the propulsive power of the fish's tail in a nedium with reduced density. Corresponding leaping hei ghts and trajectories can then be cal cul at ed.
3. Leap success ratios: as the hei ght of barrier increases, the number of attempts requi red for a successf ul pass shoul dincrease. This could he studied in a hatchery fishway, where the leap success ratio (successful leaps:leap attempts) is recorded for a range of water surface drops.
4. Mgration distance from ocean to barrier reducinq fish capabilities: a survey could be taken to record the river miles to a barrier, hei ght of barrier and species whi ch pass or are bl ocked.
§ Aerial photography: the design of lowlevel, balloon mounted photoqraphi c equi prent coul d he used. These phot ograph can greatly reduce site survey tine and provide excellent visualization when used with ground survey controls and at different stages of streamflow

Aaserude R. G. 1984 New concepts in fishway design. MS. Thesis, Dept. Sivil and Environmental Engi neering, Washington State University

Bell , MIo C. 1973. Fisheries handbook of engi neering requirements and bi ol ogi cal criteria. Fisheries-Engr. Res. Pron. Corns of Engrs. N. Pac. Div. Portland, Oregon.

Blake, R. W. 1983. Fi sh I oconotion. Canbridge Uni versity Press, Canbridge.
Chow V. T. 1959. Open- channel hydraulics. MtGraw Hill Book Company.
Cay, C. H 1961. Design of fishways and other fish facilities. The Dept. of Fisheries of Canada. Ottana. 301 p.

Daily, J. W and Harlenan, D. 1966. Fl uid dynamics. Addi son- Wésl ey Pub. Co., Inc., Readi ng, MA

Dane, B. G 1978. A review and resol ution of fish passage problens at cul vert sites in British Col unbia. Fish. and Marine Service. Tech. P.pt. 810.

Douma, J.H. 1943. Open channel flow at high vel ocities. Trans. Aner. Soc. Ci v. Engrs., No. 205, 1462-1473.

Dryden, R L. and Stein, J.M 1975. Guidelines for the protection of the fish resources of the Northwest Territories during highway construction and operation. Dept. of the Envi ronnent, Fish and Marine Servi ce. Tech. Rt. No. CEN/ T-7 5-1.

Evans, Willis A, and Beryl Johnston. 1980. Fish migration and fish passage. USDA Forest Servi ce, EM-7100-12 Whshi nqton, D. C., 63 p. pl us appendi ces.

Fairbridge R W 1968. The encycl opedia of geonorphol oqy. Encycl opedia of Earth Sci ences Series. Vol. III. Whterfalls by D. C. Ford. Pei nhol d Book Corp. New York. pp. 1219-1220.

Hall, L. S. 1943. Open channel flow at hi gh vel ocities. Trans. Aner. Soc. Ci v. Enars. No. 2205, 1393-1434.

Hoar, W S. and D.J. Randal I (Eds.). 1978. Fish physiol ogy. Vol une VI. Loconotion. Academic Press New York. (Sel ected chapters on I oconotion, swi ming capacity, and hydrodynamics by Li ndsey, Beamish and Kebb.

Jackson, R.I. 1950. Variations in flow patterns at Hell's Sate and their rel ationshi ps to the migration of sockeye sal mon. Int. Pac. Sal mon Fish. Comm Bulletin III Part II.

Kerr Cons, et al. 1980. St ream enhancenent quide. Prepared for Prov. of British Col umbia. Ministry of the Envi ronnent. Vancouver, B. C. $82 \boldsymbol{\eta}$.

McKinley, N. R. and Webb, R. D. 1966. A prodosed correction of migratory fish problens at box cul verts. 'Washinaton Dept. of Fisheries Fish. Res. Papers. 1(4):33-45.

Orsborn, J. F. 1982. Low cost fish passage facilities at five waterfalls. Stikine and Ketchikan Areas, Tongass National Forest, Al aska.

Pryce-Tannatt, T.E. 1938. Fish passes. Buckland Lectures, 1937. Edvard Arnold and Co., London.

Renard, K. G. and Laursen, E. M. 1975. Dynamic behavi or model of ephemeral stream J.Hyd. Di v., ASCE, 101 (HY5):511-528.

Salmonid. 1983. Dept. of Fish. and Oceans. Vancouver, B.C.Vo. VIII. No. 4.
Stuart, T. A 1964. The leaping behavi or of sal non and trout at falls and obstructions. Dept. of Agri. and Fish. for Scotland, Freshwater and Sal non Fish. Res. (Edi nburgh: Her Maj esty's Stationery Office). 28, 46 f.

Whtts, F.J.1974. Design of culvert fishways. Whter Resources Research Inst., Uni v. of Idaho, Mbscow ID 62 p.

Weht, P. W. 1975. Hydrodynamics and energetics of fish propulsion. Bull. Fi sh. Res. Bd. Can. 190:159 p.

Ziemer, G.L. 1961. Fish transport in uater ways. Al aska Dept. of Fish and Gane.

## APPENDIX I

NOTATION

| t!L | in water surface el evation Hei ght of the fishes leap |
| :---: | :---: |
| Di stances ( $L$ and X) |  |
| LS | Lengt h of slope |
| X | Horizontal di stance from the crest to standi nq uave |
| XP | Horizontal distance from the crest to point where falling water pl unges |
| XSW | Horizontal distance from point where falling water pl unges to standi ng wave |
| LF | Length of fish |
| LFS | Length the fish can swim |
| Vel ocities (V) |  |
| Ww | Vel ocity of water |
| vF | Fi sh speed |
| VFB | Burst speed of fish |
| VFP | Prol onged speed of fish |
| VFS | Sustai ned speed of fish |
| ii | Temporal mean vel ocity |
| $\bar{u}_{f}$ | Temporal nean vel ocity at which the fish swim |
| $u_{*}$ | Shear vel ocity |
| VR | Rel ative speed of the fish to the water |
| $V W_{C}$ | Vel ocity of water at falls crest |
| Depths ( $d$ ) |  |
| ${ }^{\text {d }}$ w | Depth of water |
| ${ }^{\text {d }}$ c | Critical depth |
| ${ }^{\text {dpp }}$ | Depth in the pl unge pool |

Denth of plunge by waterfall $\mathbf{j}$ et
Depth of fish
$S_{e}$ Fi sh exit (water inlet) slope$S_{p}$Fish passage (uater transition) slone
Others
$\mathrm{C}_{\mathrm{fc}}$ Coefficient of fish condition$\theta W_{C}$OL
Angle in degrees from horizontal at which the vel ocity leaves the crestOL
Angle in degrees from the horizontal at which the fish1 eaps
R Hydraulic radi us
Accel eration of gravity
Manni ng' s emperical roughness coefficient
WIth

## APPENDI X II <br> AN ANALYSI S OF COHO AND CHM SALMON SWWM NG UP A VELOCITY CHJE

AN ANALYSI S OF COHO AND CHUM SALMDN SWIMMING UP A VELOCI TY CHTE

Whterfalls and culverts sonetines form vel ocity barriers to the upstream migration of adult sal mon and steel head trout. Often, the swimm $\mathbf{n g}$ capabilities of the species in question will determine the success of passage. Other factors which effect the success of passage are: depth of flow di stance the fish must swim and vi ol ent turbulence (unstable flow patterns). In order to anal yze how these factors effect fish passage, a "vel ocity chute" study was conducted at Johns Creek Fish Hatchery near Shel ton, Whshi ngt on. This study was done in conj unction with the Bonneville Power Admini stration (BPA) Fi sheries Project 82-14, "New Concepts in Fish Ladder Desi gn. " At the concl usi on of the study, it becane apparent that a vel ocity chute could be used as an efficient and economical method of passing fish. $\mathbf{W}$ th a fishway pool length of $12 \mathbf{f t}(3.66 \mathrm{nl}$ and a chute I ength of 8 ft . ( 2.44 m ) chum sal non (Onchorhynchus keta) were observed passing a change in water surface el evation of $1.8 \mathrm{ft}(0.55 \mathrm{mi}$ witha passage success rate of $100 \%$

Experimental Facilities
The chute was installedin the existing fishway bul khead slots. It was constructed with $3 / 4$ inch plywood at alength of $8 \mathrm{ft} \mathbf{( 2 . 4 4} \mathbf{~ m}$. In test +1 the chute width was $2 \mathrm{ft}(0.61 \mathrm{~m})$ with a wall hei ght of $1 \mathrm{ft}(0.30 \mathrm{~m})$. After completion of test \#f, the width was decreased to $1.25 \mathrm{ft} .(0.38 \mathrm{~m})$ and the wal l hei ght was increased to $1.5 \mathrm{ft}(0.46 \mathrm{~m}) \mathrm{in}$ order to obtain a greater depth of flow (test \#2). At the inlet (crest) the chute was supported by
two hinges, which allowed adjustment of the slope. Near the fish entrance it was supported by adjustable vertical and horizontal support rods (Fig. 1).


Transition Zone

Uniform Flow Zone

Hydraulic Jump/
Standing Wave Zone

Figure 1. Plan view of the 8 ft long and 1.25 ft wide velocity chute test apparatus installed in the Johns Creek Fishway.

## Chute Hydraulics

The approach velocity from the upstream pool was negligible, and critical depth (Froude No. $=$ 1) always occurred at the chute water entrance or crest. The three zones of flow observed during testing were: 1) transition zone; 2) uniform flow zone; and 3) hydraulic jump/standing wave
zone. In the transition zone, the flow waspassing through critical lat the crest) to uniform depth approximately $2 \mathrm{ft}(0.61 \mathrm{~m})$ down the slope from the crest. The depth is greater in the transition zone than in the uniform flow zone and when the fish approached the transition zone they "burst" through it into the upstream pool because of the decreased flow vel ocity. The uniform flow zone began at approxi natel y $2 \mathrm{ft}(0.61 \mathrm{~m})$ fromthe crest and remai ned at constant depth until it dissipated into the downstream pool. At this point, a hydraulic $\mathbf{j}$ ump devel oped which increasediin intensity as the chute vel ocity increased.

The addition of roughness el enents on the floor of the chute had the effect of increasing the depth and decreasing the vel ocity for a given sl ope. The spacinq bet neen the rouqhness el enents was filled witn circulatinq water containing stable eddies, creating a pseudo nall. Chow (1959) cl assifies this as "quasi-snooth flow" Quasi-snooth flow has a hi gher friction factor than flow over a true snooth surface because the eddies in the grooves consume a certai $n$ anount of energy. These hydraulic conditions were observed in a plexiglass nodel of the chute in Al brook Hydraulics Laboratory at Whshi ngt on State Uni versity. The nodel was al so use4 to verify field neasurements of vel ocity and di scharge.

Study Obj ective
The objectives of this field study were to obsenve an4 record the fol I owi nq:

1. The response of coho and chumsal non to outflow conditions at the downst ream end of the chute:
a. I eaping;
b. swiming; and
C. attraction conditions.
2. Whter depths which affect passage:
a. mini mum depth;
h. depth where swi ming is uni mpai red; and
c. effect of roughness el enents on water depth/fish passage.
3. Swi ming speeds of coho and chum sal non:
a. rel ative vel ocity of fish with respect to water (fish speed),
b. rel ative vel ocity of fish with respect to chute, and
c. passage time.

Results
Test No. 1; Chute Vidth $=2.0 \mathrm{ft}(0.61 \mathrm{~m})$
In this test observations were nade of the chute hydraulics and fish movements. The majority of fish tested were adult coho sal non (Onchorhynchus kitsutch) which were in poor physical condition, di splaying ful spawning col ors and averaging about $2 \mathrm{ft}(0.61 \mathrm{~m})$ in length. The few chum sal non tested al so di splayed full spawning col ors and averaged 30 in (76.2 $\mathbf{c m})$ in length. The maxi mum depths of the fish bodies were: coho 0.4-0.5 ft ( $0.12-0.15 \mathrm{~m}$ ) and chum $0.65 \mathrm{ft}(1.65 \mathrm{~cm})$.

An imedi ate probl em devel oped because the depth of flow at 0.2 to 0.3 ft ( 0.06 to 0.09 m ) was too shallow The snaller coho could pass but the I arger chum could not. Average vel ocities in the chute ranged from 5 to 8.3 fps ( $1.74-2.9 \mathrm{~mm}$ ) which is in the range of the upper prol onged speed of $10.6 \mathrm{fps}(3.23 \mathrm{mds}$ ) for coho sal non suggested by $\operatorname{Bell}(1973)$.

The fish response to different types of hydraulic jumps (or standing uaves) was observed. The Froude number for all tests was in the 1.2 to 4.1 range. Chow (1959) suggests for this range the jump type is just begi nning to oscillate as was observed. Stuart (1964)describes these water surface oscillations as points from where fish are often seen leaping. The fish
that passed were observed to be holding in the standing wave, then bursting into the uniform flow zone (Fig. 2), and proceeding at a constant speed until the transition zone was reached. Coho salmon that reached the transition zone always swam successfully into the upper pool. Unsuccessful fish were usually slow starters who, after several attempts, were observed leaping out of the standing wave.

Test No. 2; chute width $=1.25 \mathrm{ft}(0.38 \mathrm{~m})$
The coho tested were in worse condition than in test \#1 but a fresh run of chum salmon entered Johns Creek only a few days before the testing started. Fish sizes were the same as Test Mo. 1. The channel width was decreased to $1.25 \mathrm{ft}(0.38 \mathrm{~m})$ and roughness elements were added to the chute floor. The height of the roughness elements was $1.5 \mathrm{in}(3.8 \mathrm{~cm})$, spaced at a distance of 3 in ( 7.6 cm ) and 6 in ( 15.2 cm ) in separate removable false floors. The data obtained from these tests are summarized in Table 1.


Figure 2. Coho salmon bursting out of hydraulic jump into uniform flow zone.

Table 1. Vel ocity chute test \#2 data.

| Test No . | Uni f ormDenth |  | Uni form Vel ocity (fps) | Length Sl ope (ft) (Slope) (\%) | Passage Success (\%) | Fl ow (cfs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | From Fl oor (ft) | Above Roughness El. (ft) |  |  |  |  |
| $2 a^{\text {a }}$ | 0.13 | --- | 8.3 | 5.5 | O(coho) | 1.1 |
|  |  |  |  | (26) | O(chum) |  |
| $2 b^{\text {b }}$ | 0.41 | 0.28 | 5.2 | 7.5 | 95(coho) | 2.3 |
|  |  |  |  | (15) | 92(chum) |  |
| $2 c^{c}$ | 0.51 | 0.38 | 5.0 | 8.0 | 64(coho) | 2.9 |
|  |  |  |  | (19) | 89 (chum) |  |
| $2 d^{C}$ | 0.66 | 0.54 | 6.8 | 7.0 | 78(coho) | 5.0 |
|  |  |  |  | (27) | 100(chum) |  |
| $2 e^{c}$ | 0.56 | 0.44 | 6.7 | 7.0 | Nb coho | 4.1 |
|  |  |  |  | (36) | 23(chum) |  |

Notes: a - roughness el enents not used, floor consi sted of plyood ( $\mathrm{n}=0.021$ ).
b - Roughness el enents with $\mathbf{3}$ inch I ongitudi nal spacing ( $n=0.044$ ).
$c$ - Roughness el enents with 6 inch longitudi nal spacing ( $n=0.055$, 0.053 and 0.059 for tests 2 c , 2 d and 2 e respectivel y ).

In test 2a, roughness el enents were not used, and the depth of flow was $0.13 \mathrm{ft}(0.04 \mathrm{~m}) \mathbf{w i t h}$ an average vel ocity of $8.3 \mathrm{fps}(2.53 \mathrm{mfs})$. The success passage was OX for coho and chum so this depth was a barrier. Once the roughness el enents were added to the floor the depth increased to 0.4 ft $(.12 \mathrm{~m})-0.6 \mathrm{ft}(0.18 \mathrm{~m})$ range which was adequate for fish passage. This is the depth from the floor to the water surface. Dane (1978) suggests a minimudepth of $0.75 \mathrm{ft}(0.23 \mathrm{~m})$ for Pacific Sal non, and Dryden and Stein (1975), suggest that "in all cases, the depth of water in a culvert should be sufficient to subnerge the Iargest fish to use the structure." This field study has shown how partial subnergence impairs the ability of the fish to generate thrust.

Fi sh Movements
As noted in Test $\# 1$ results, $f i s h$ were observed hol ding in the hydraulic jump where the vel ocity is decreased and then bursting into the uni formflow zone as shown in Fi gure 3. Once into the unf form flow zone (zone of hi ghest velocity) the fish al ways noved Iaterally to the chute side wall and conti nued through the uniform flow zone al ong the wall (Fig. 4). Near the wall boundary the water vel ocity was decreased as much as $60 \%$ of the centerline vel ocity, because of the shearing resi stance created. When fish approached the transition zone and the vel ocity decreased, they noved out into the midde of the chute (Fig. 5) and burst through the crest into the upper pool. Sone of the unsuccessf ul or slower fish were observed crossing back and forth laterally in the chute searching for a zone of lower vel ocity.


Figure 3. Chum salmon bursting out of hydraulic jump after several seconds of holding in the jump.


Figure 4. Chum salmon swimming up chute taking advantage of reduced velocities in boundary layer.


Figure 5. Chum salmon approaching transition zone moving laterally into middle of chute.

## Analysis of Fish Speeds

## Tests Results

The time required to successfully pass the chute was recorded with a stop watch. Knowing the distance that the fish swan to reach the crest, the velocity of the fish with respect to the chute can be calculated. When the water velocity is determined the actual swimming speed of the fish can be calculated. This calculation assumes constant velocity down the chute which is not exactly true because of the transition zone near the crest. But as noted earlier, uniform depth was reached within $2 \mathrm{ft}(0.61 \mathrm{~m})$ of the water inlet. As the slope was increased in subsequent tests the flow approached uniform depth in an even shorter distance.

A cal cul ation of fish speeds for test $\# 2 b$ is shown bel ow
Length of Slope(LS) $=7.5 \mathrm{ft}$.
Whter Vel ocity (VW) $=5.2 \mathrm{fps}$
Passage Ti nes (PT) in seconds:
Test \#2b:
coho chum
$\begin{array}{lll}\text { naxi mum } & 4.7\end{array}$
$\begin{array}{lll}\text { average } & 3.5 & 4.0\end{array}$
$\begin{array}{lll}\mathbf{m i} \text { ni mum } & 2.0 & 2.3\end{array}$
Fish Vel ocity (fps) $=(L S) /(P T)+\mathbf{W}$

| Species | Fish Velocity (fps) |  |  |
| :--- | :---: | :---: | :---: |
|  | Maximum | Average | M ni mum |
| Coho | 8.9 | 7.3 | 6.8 |
| Chum | 8.5 | 7.1 | 6.6 |

Vel ocities for the other tests are summarized in Table 2.
Table 2. Naxi mum aver age and minimmsuing speeds of coho and chum sal mon passing the vel ocity chute.

| Test Ho. | Speci es | M ni mum | Fi Sh Vel ocity (fps) <br> Average | Maxi mum |
| :--- | :--- | :---: | :---: | :---: |
| 2b | Coho | 6.8 | 7.3 | 8.9 |
|  | Chum | 6.6 | 7.1 | 8.5 |
| 2c | Coho | 6.0 | 6.5 | 7.6 |
|  | Chum | 6.0 | 6.4 | 7.1 |
| 2d | Coho | 9.1 | 9.5 | 10.7 |
|  | Chum | 8.6 | 8.8 | 8.9 |
| 2e | Chum | 8.8 | 9.1 | 10.0 |

Swi ming speeds of fish are usually reported in three categories: sustained, prol onged and burst. Burst speed is defined as causing fatigue in 5 to 10 seconds (Bel), 1973). From observations and fatigue times recorded, the fish passing the chute were assuned to be using burst activities. Bell (1973) suggests a burst speed range of 10.6 to $21.5 \mathrm{fps}(3.2$ to $6.5 \mathrm{~m} / \mathrm{s}$ ) for coho sal non. The maxi mum swi ming speed (or burst speed) recorded in these tests for coho sal mon was lg. 7 fps ( 3.26 mis ), definitely on the lower range of Bell's suggested speeds. But as noted earlier, these coho were in very poor physi cal condition. Theref ore, the naxi mum speed of $10.7 \mathrm{fps}(3.26 \mathrm{~ms}$ ), which is $50 \%$ of the maxi mum burst soeed suggested by Bell (1975), is probably the upper range of burst speed for a coho sal non near its spawning tine.

Burst speeds of chum sal non have not been recorded in the literature, but they are generally thought to be a weaker fish in comparison to coho. Observationsl of chum sal non leaping 3 and $4 \mathrm{ft}(0.91$ and 1.2 m$)$ suqgest a burst speed of about $15 \mathrm{fps}(4.6 \mathrm{mis})$ to achi eve these hei ghts. The maximum swiming speed recorded for chum sal mon was $10.0 \mathrm{fps}(3.05 \mathrm{~m} / \mathrm{s})$ or $67^{\circ}$ of the maxi mum burst speed of $15 \mathrm{fps}(4.6 \mathrm{~m} / \mathrm{s})$. The chumtested were in goor shape, but their spawning col ors and teeth were fully devel oped.

Thi s information can he hel pf in anal yzing waterfalls and cul verts as barriers to upstreamfish migration. The speed of the fish can be tasef on sone percentage of the maximum burst speed suggested by Bell (1973), depending on the condition of the species in question. This will be termed
the "coefficient of fish condition" $\left(C_{f c}\right)$. Table 3 gives a range of $C_{f C}$ and the corresponding fish conditions based on observations made of coho and chum sal non in Johns Creek.

Table 3. Coefficient of $f i$ sh condition ( $C_{f c}$ ); val ues based on observations and data taken for coho and chum sal non at Johns Creek Fish hat chery near Shel ton, Vhshi ngt on.
Fi sh Condition
$C_{f c}$
Bright, fresh out of the ocean or still a long di stance from spawning grounds, 1.00 no spawni ng col ors yet devel oped.
Good, in the river for a short time, spauni ng col ors apparent but not fully0.75 developed, still migrating upstream
Poor, in the river for a long time, full $\begin{array}{ll}\text { spanning col ors devel oped and fully } & 0.50\end{array}$ nat ure, very cl ose to spawning grounds.

Rel ative Fish Vel ocity
Another concept tested in this study was that of the rel ative vel ocity at which fish swimuth respect to the chute. Studies on fish passing through cul verts have assuned this "fish passage vel ocity" to be 2 fps ( 0.61 $\mathrm{m} / \mathrm{s}$ ) in rel ation to the cul vert (Dane, 1978) . This is an important parameter for passage anal ysi secause, given the water vel ocity, one can determine the speed the fish must swimto pass. Val ues obtai ned in this study were average4 over four runs and are given in Table 4.

Table 4. Rel ative vel ocity of chum and coho sal non with respect to chute.

Speci es
Rel ative Fish Vel ocity (fps)

Coho
2.1

Chum
1.9

Feasi bility for Fish Passaqe
Al tests uere conducted with a pool length of $12 \mathrm{ft}(3.66 \mathrm{~m})$ and the change in water surface el evations (H) were measured for each test. The nater surface drop was not a variable in this study because the vel ocity down the chute is independent of the change in water surface el evations, as can he seen by Manning's equation:

$$
V=(1.49 / \mathrm{n}) \mathrm{R}^{2 / 3} \mathrm{~S}^{1 / 2}
$$

The chanc̣e in water surface el evation (H) was varied to obtain the sane chute length at a steeper slope. When the val ues of $H$ are compared with the passaqe success rates and fishway slope, the feasibility of asing slinhtiz roughened chutes for fish passage becomes obvious (Table 〔). 「urrentlv fishway desi gners suggest a maximumater surface drop of ! C ft (i.j.5 7) for coho sal mon, $0.75 \mathrm{ft}(0.23 \mathrm{~m})$ for chum sal non, and a maximum fishway slope of 1 on 8 . In test 2 d , with a water surface drop of $1.25 \mathrm{ft}(0.56 \mathrm{f}$ ? f and a fishway slope of 1 on 6.5 a $100^{\%}$ passage success rate was recorned for chum sal non. This was achi eved by adding onl y rounhness el enents $1 .{ }^{5} \times$ $1.5 \mathrm{in}(3.81 \times 3.81 \mathrm{~cm})$ at $6 \mathrm{in}(15.2 \mathrm{~cm}) \mathrm{cl}$ ear spacing to the floor of the chute.

Table 5. Change in water surface drop, percent successful passage and fish way slope for chumsal non testing at johns Creek Fish Hatcherv near Shel ton, Whshi ngt on.

| Test No . | $H(f t)$ | Chute SI ope (\%) | : Passage ( Chum) | Overal I <br> Fishway Sl ope I ncl udi ng Pool Lenath |
| :---: | :---: | :---: | :---: | :---: |
| 2b | 1.03 | 15 | 92 | 1/11.7 |
| 2c | 1.80 | 19 | 89 | 1/6.7 |
| 2d | 1.85 | 27 | 100 | 1/6.5 |
| 2 e | 2.52 | 36 | 23 | 1/4.8 |

## Concl usi ons

Thi s study showed how an $8 \mathrm{ft}(2.44 \mathrm{~m})$ wooden rectangul ar chute can be used to estimate the swing capabilities of coho and chumsal mon and to determine the feasibility of using chutes in series to pass fish. Some of the findi ngs can be summari zed:

1. When passing the chute, coho sal non only leaped after several unsuccessf ul at tenpts at swiming. Chum sal non al uays swam to pass.
2. Minimum suggested depths for passage are: coho $0.4 \mathrm{ft}(0.12 \mathrm{~m})$ and chum $0.5 \mathrm{ft}(0.15 \mathrm{~m})$. Depth of water where fish are uni mpai red should be equal to the naxi mum depth of the fish body.
3. The naxi num speed obt ai ned for coho and chum sal non are 10.7 and 10 fps ( 3.26 and 3.05 mis ), respecti vel $\mathbf{y}$.
4. Coho sal mon were swiming at a level of $50 \%$ of their maxi mum burst speed and chum sal non at $67 \%$.
5. The average rel ative vel ocities of the fish with respect to the chute nere coho $2.1 \mathrm{fps}(0.64 \mathrm{mms})$ and chum $1.9 \mathrm{fps}(0.58 \mathrm{~m} / \mathrm{s})$.
6. The use of a vel ocity chute $1.25 \mathrm{ft}(0.38 \mathrm{~m})$ wide by $1.5 \mathrm{ft}(0.46$ $m$ ) high with roughness el enents can be used to pass sal non with a high passage success rate and water surface drops of up to 2 ft $(0.61 \mathrm{~m}) \mathrm{with}$ a pool length of $12 \mathrm{ft}(3.66 \mathrm{~m})$. The pool Iength is the di mensi on from one chute inl et to the next,

Suggestions for Future Testing
To measure the response of fish to a certain paraneter, all others must he hel d constant. For example, in test $\# 2$ the vel ocity was increased by increasing the slope of the chute, but because the depth was not hel d constant it was hard to determine whether the depth of flow or the increased vel ocity was affecting the passage success rate. This could be sol ved by keeping the depth of flow al nays greater than of equal to the maximum depth of the fish at the midsection. Other suggestions for further testing might address the foll owing:

1. At what slope does the vel ocity increase creating a velocity barrier, by species, assuming the depth is sufficient?
2. What is the fish response at a vel ocity barrier; does leaping comence or do the fish continue to try to swim up the chute?
3. At one vel ocity where the passage success is low try three different sizes of roughness el enents and observe behavior.
4. As the vel ocity increases, does the rel ative vel ocity of the fish with respect to the chute increase cr remain corstant?

## LI TERATURE CI TED IN APPEND X II

Bell, M. C. 1973. Fisheries Handbook of Engi neering Requi renents and Bi ol ogi cal Criteria. Fi sheries Engi neering Research Program J. S. Army Engi neering Di vision. North Pacific Corps of Engi neers. Portland, Oregon.

Chow V. T. 1959. Open Channel Hydraulics. MtGraw Hill Book Company. New York.

Dane, B. G. 1978. A revi ew and resol ution of fish passage problens at cul vert sites in Eritish Col unbia. Fisheries and Marine Service Techni cal Report No. 810. Vancouver, BC.

Dryden, R.L. and Stein, J. M. 1975. Guidel ines for the protection of the fish resources of the Northwest Territories during hi ghway construction and operation. Dept. of the Environnent. Fisheries and Marine Service. Techni cal Report Seri es No. CEN/T-75-1.

Stuart, T. A. 1962. The leaping behavi or of sal non and trout at falls and obstructions. Freshwater and Sal non Fisheri es Research Paper 2R, Department of Agriculture and Fi sheries. Her Majesty's Stationery Office. Edinburg, Scotl and.


[^0]:    apink \& Chumsal non val ues estimated fromleap hei ghts of 3 to 4 ft at waterfal ls. b Called cruising and sustai ned, respectivel y, in Bel I (1973).-

[^1]:    1 In profile, but one must consider the flow pattern in plan view because it can cause di sorientation of the fish.

